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Abstract 

It is virtually a truism that companies should respond to situations of high complexity, dynamics 

and contingency with strategic management measures. Not least in turbulent VUCA-type envi-

ronments, the company is well advised to use alternative scenarios for environmental forecast-

ing. The so-called scenario technique is used for this purpose. Human modes of thought, judg-

ment and action are often ambiguous and rarely univocal. Here, so-called expert (control) sys-

tems based on fuzzy control offer valuable help. Their core is rule inference resulting in fuzzy 

rule output. In many cases, however, managers are interested in receiving concrete recommen-

dations for action that are as unambiguous as possible. To do so, they need to defuzzify the 

fuzzy output set. In this paper, we consider selected defuzzification procedures in the area of 

scenario management. 
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1 Introduction 

1.1 Preliminary remarks 

A frequently and rightly recommended instrument of strategic management, which strictly 

speaking is not a singular tool but a toolbox, is the so-called scenario technique (Chermack/Lyn-

ham/Ruona 2001, Clemons 1995, Dess/Lumpkin/Eisner 2007, Godet 1987, 1995, 2001, Go-

det/Roubelat 1996, Grant 2008, Heijden 1996, Hill/Schilling/Jones 2016, Kluyver/Pearce II 

2003, Lindgren/Bandhold 2003, Linnemann/Klein 1985, Reibnitz 1995, Roubelat 2000, Schoe-

maker/Heijden 1992, Wack 1985a, 1985b, Wilson 1998), for which various action models have 

been developed. Among these action models are rule-based expert systems (Volkmer/Metz-

ger/Spengler/Vogt 2019), where a rule is understood as an if-then linkage. The if-component is 

also referred to as rule premise or rule input, the then-component as rule conclusion or rule 

output. The if-then link is established by a so-called inference (Comesana Benavides/Prado 

2002, Zimmermann 1996). Scenarios are future development paths of data constellations rele-

vant for decision-making (Georgantzas/ Acar 1995, Heijden 1997, 2000, Huss/Honton 1987, 

Kleiner 1999, Ringland 1998, Schoemaker 1993, 1995, Schwartz 1991, Simpson 1992). Since 

the number of potential scenarios can quickly grow immeasurably in real cases, their number 

must be reduced to a few. In the literature, it is often recommended to ultimately use those 

scenarios for the development of strategic alternatives that are as consistent, relevant and prob-

able as possible (Amara/Lipinski 1983, Chandler/Cockler 1982, Chermack/Lynham/Ruona 

2001, Heijden 1997). 

However, there are problems associated with the probabilistic assessment of scenarios (Brau-

ers/Weber 1988, Fahey/Randall 1998, Kluyver/Moskowitz 1984): 

The total probability mass is always 1 and is to be distributed among the selected scenarios. 

With four scenarios and equal distribution, the scenario probability is 0.25 (this is certainly not 

high). If the probability of a scenario is estimated with 0.8, a mass of 0.2 remains for the re-

maining scenarios. We see therefore that the mentioned requirement is not to be fulfilled. We 

therefore argue here against probabilistic approaches and recommend the use of (modal-logi-

cally founded) possibilistic models based on fuzzy set and possibility or necessity theory (Ca-

narelli 1996, Dubois 1988, Dubois/Lang/Prade 1987, 1991, Dubois/Prade 1987, 1988, 2001, 

Zadeh 1978). At their core, they offer two advantages: 

On the one hand, one does not get into the probabilistic conflict described above, and on the 

other hand, the use of possibilistic calculations corresponds particularly well to human modes 

of thinking. Thus, for example, one does not have to deal with the question of how likely one 
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assesses innovative product developments through the use of digital technologies in the next 

twenty years, but how possible one considers them to be then, or, to use another example, how 

one assesses the price development of fossil and renewable energy sources possibilistically for 

the medium-term future. While one can hardly answer the first question seriously, one is much 

more capable of estimating the corresponding possibility values. 

The common methods of the classical scenario technique are based on the Boolean logic, ac-

cording to which an element 𝑥 uniquely belongs or uniquely does not belong to a set 𝐴. 

Thus, for the membership value of such a crisp set 𝐴, 𝜇𝐴(𝑥) ∈ {0,1} holds. 

In the context of fuzzy logic (Buckley/Eslami 2002, Gottwald 1993, Pedrycz 1993, Piegat 2001, 

Zadeh 1983, Zimmermann 1987, 1996), on the other hand, the membership of an element 𝑥 in 

a fuzzy set �̃� can also take on graded values (between 0 and 1), such that 𝜇�̃�(𝑥) ∈ [0,1] holds 

(Bellmann/Zadeh 1970, Dubois/Ostasiewicz/Prade 2000, Dubois/Prade 1980a, Pedrycz 1993, 

Piegat 2001, Wang/Chang 2000, Zimmermann 1996). 

The approaches and tools of fuzzy logic have been developed not least since the seminal work 

of Zadeh (1965) and are now widely used, especially in the engineering field. Although many 

applications - think, for example, of fuzzy logic-based crane and elevator controls, camcorders 

or washing machines - are now part of the standard repertoire of control engineering, the man-

agement sciences have to date still had some difficulty with this set of tools (Darwin/John-

son/McAuley 2002). This is especially regrettable insofar as fuzzy calculations are particularly 

appropriate for human thinking, because which manager, for example, will want to, let alone 

be able to formulate exact scenarios (in the sense of 0-1 logic) for a ten-, fifteen- or even twenty-

year planning horizon. 

 

1.2 Influence analysis, consistency analysis and cross-impact analysis 

Key scenario management tools include (a) influence analysis, (b) consistency analysis, and (c) 

cross-impact analysis. 

Ad (a): In the context of influence analysis, which we do not want to discuss further here, one 

determines spheres of influence that are disaggregated into influence factors and for which one 

determines so-called influence scores (Reibnitz 1995). 

The corresponding influence scores (𝑏𝑖𝑗) express the surveyed experts' assessment of the extent 

to which factor 𝑖 exerts an influence on factor 𝑗. For example, the potential influence can be 

measured on a 6-point scale from 0 = no influence, 1 = very low influence, 2 = low influence, 
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3 = medium influence, 4 = high influence to 5 = very high influence. Depending on the un-

derlying set of values, e.g. 𝑏𝑖𝑗 ∈ {0,1,2,3,4,5} or 𝑏𝑖𝑗 ∈ [0,1] may then apply. By appropriate 

addition over 𝑗 (resp. 𝑖) one then arrives at corresponding active (resp. passive) sums, which in 

turn then allow a rational reduction of the descriptors. While in the crisp case, one calculates 

with crisp values (𝑏𝑖𝑗), in the fuzzy case one uses fuzzy numbers or intervals, which can be 

processed just as easily, but determined more realistically. 

Ad (b): In the case of the consistency analysis (Kluyver/Pearce II 2003), critical descriptors and 

their expressions must first be examined in pairs with regard to their consistency. If, for exam-

ple, three descriptors each have two expressions, six pairs of descriptors are to be assessed. 

These are then amalgamated to so-called assumption bundles and also checked for consistency. 

Again, crisp and fuzzy calculi can be used, whereas in the fuzzy case fuzzy numbers (Du-

bois/Prade 1978, Spengler/Vogt 2008), fuzzy intervals or so-called linguistic variables (Zadeh 

1975, 1987) can be considered. The latter represent quadruples that include the set of linguistic 

terms in addition to the name of the linguistic variable, the corresponding basic set, and a se-

mantic rule (Zadeh 1975). For example, a linguistic variable represents the sales potential of a 

company. The corresponding basic set then consists of potential sales figures, which can be 

measured in pieces, monetary units, or weights, among others. The semantic rule assigns a 

membership function to each linguistic term on the corresponding base set, while the linguistic 

terms designate possible expressions of the linguistic variables (e.g. "low", "medium", "high"). 

In the course of the consistency analysis, each pair of descriptors 𝑖 and 𝑗 is to be assessed in 

terms of its consistency. For example, members of a scenario team measure consistency on a 

continuous (and here: crisp2) input set 𝑥𝑖𝑗 ∈ [0,6].Moreover, the extent of the respective con-

sistency (�̃�) could be assessed via the linguistic terms "very low" (𝑣𝑙), "low" (𝑙), "medium" (𝑚), 

"high" (ℎ), and "very high" (𝑣ℎ). Each of these terms is then assigned a membership function. 

Fuzzy numbers and fuzzy intervals are particularly suitable for this purpose. While the mem-

bership function of a fuzzy number has a clear peak at the 1-level and to the left or right of it a 

rising or falling function course, the 1-level of the fuzzy interval represents a plateau. In the 

further course, we want to assume linear membership functions throughout here, since these are 

particularly easy to process and correspond to the human modes of thinking in many cases. 

                                                 

 

2 The use of fuzzy input values is possible without major problems. However, we do not want to consider them 

further here for the purpose of complexity reduction. 



6 

 

Figure 1 shows, among other things, that in the case of continuous linear membership functions, 

the experts provide the following judgments: They consider input values 𝑥𝑖𝑗 between 0 and 1 

as "very low" in any case (membership value 𝜇(𝑥𝑖𝑗) = 1) and those equal to 2 as not "very low" 

at all (membership value 𝜇(𝑥𝑖𝑗) = 0). They do not consider input values between 1 and 2 to be 

completely "very low" (1 > 𝜇(𝑥𝑖𝑗) > 0). They judge an input value equal to 𝑥𝑖𝑗 = 2 as "low" 

in any case, input values equal to 1 and 3 as "low" in no case, and input values between 1 and 

2 and between 2 and 3 as graded "low". The membership functions of further input values are 

to be interpreted analogously. 

 

 

Figure 1: Graphical representation of the fuzzy expert judgments 

It can be seen from figures 2.1-2.3 that our experts estimate the consistency of the descriptor 

pair 𝑖 = 1 and 𝑗 = 2 with 𝑥12 and thus judge it to the degree 0.6 as "very low" and to the degree 

0.4 as "low". In addition, 𝑥13 as well as 𝑥23 apply, so that the consistency of the descriptor pair 

1 and 3 to degree 0.9 is rated as "medium" as well as to degree 0.1 as "low" and that of the 

descriptor pair 2 and 3 to degree 0.8 as "high" as well as to degree 0.2 as "very high". 
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Figures 2.1-2.3: Descriptor expressions with membership values to fuzzy consistency values 

The inference rule of modus (ponendo) ponens known from Boolean propositional logic (Du-

bois/Prade 1991, Zimmermann 1987) is also frequently applied in fuzzy logic-based expert 

systems (Hall/Kandel 1991, Zimmermann 1996). For the form of fuzzy consistency analysis of 

interest here, this means that (if-then) rules for the conclusions to be drawn from the premises 

(here: fuzzy consistency values of descriptor pairs) are to be derived for the overall consistency 

of entire assumption bundles. In the above example, (for example) the rules can be formulated 

as follows: 

Rule 1: 

𝑥12 = �̃�12
𝑣𝑙 ∧ 𝑥13 = �̃�13

𝑙 ∧ 𝑥23 = �̃�23
𝑙 → �̃�123 = low 

Rule 2: 

𝑥12 = �̃�12
𝑙 ∧ 𝑥13 = �̃�13

𝑚 ∧ 𝑥23 = �̃�23
ℎ → �̃�123 = medium 

Here �̃�123 symbolizes the overall consistency of the descriptor triple 1, 2, and 3. For the subse-

quent fuzzy inference (Bouchon-Meunier 1991, Dubois/Prade 1991, Piegat 2001, Schnei-

der/Kandel 1991, Zadeh 1983) only those rules (Yager 1991) are further used whose degree of 

fulfillment (DOF) is positive. This can only be positive if the left side of the implication is 

positive and is often determined via the so-called minimum operator. In the above example, 

rule 1 has a DOF of 0 and rule 2 has 𝐷𝑂𝐹 = min(0.4; 0.9; 0.8) = 0.4, i.e. rule 2 is satisfied to 

the degree 0.4. 
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Triangular norms (𝑡-norms) and 𝑡-conorms (𝑠-norms) can be used for linking rule components 

(e.g. input components). 𝑡-norms serve to form the set average and thus to link via the logical 

and ("both … and"), while 𝑠-norms serve to unify sets and thus to link via the logical or ("either 

... or … or both") (Dubois/Prade 1980b, Fodor/Yager 2000, Pap 2002, Yager 1980). Let 𝑇 be a 

certain operator from the class of 𝑡-norms (e.g. the minimum operator) then the following prop-

erties hold (Klement/Mesiar/Pap 2004, Zimmermann 1996): 

𝑇[𝑥, 𝑦]: [0,1 ] × [0,1 ] → [0,1 ] (Definition range) 

𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥) (Commutativity) 

𝑇(𝑇(𝑥, 𝑦), 𝑧) = 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = (Associativity) 

𝑥 ≤ 𝑦 ⇒ 𝑇(𝑥, 𝑧) ≤ 𝑇(𝑦, 𝑧) (Monotony) 

𝑇(𝑥, 1) = 𝑥, 𝑇(𝑥, 0) = 0 (Neutral and zero element) 

The 𝑡-norms include, for example, the minimum operator, the algebraic product, the bounded 

difference, the drastic product, and the Yager average (Zimmermann 1996). The 𝑠-norms, 

which include the maximum operator, the algebraic sum, the bounded sum, the drastic sum, and 

the Yager union (Zimmermann 1996), are also commutative, associative, and monotonic. How-

ever, for the neutral and the zero element applies 𝑆(𝑥, 1) = 1, 𝑆(𝑥, 0) = 𝑥, with 𝑆 as operator 

from the class of 𝑠-norms (Klement/Mesiar/Pap 2004, Zimmermann 1996). 

As a simple example, use the following rule to illustrate the background: 

"IF it was dry before AND it rains OR snows afterwards, THEN the weather changes". For the 

AND-link of the if-component, one use a 𝑡-norm and for the OR-link, one use a 𝑠-norm. 

Ad (c): In the course of cross impact analyses (Gordon/Hayward 1968, Sarin 1978) cross influ-

ences between the so-called critical descriptors are determined.3 

For example, the time lag between the occurrence of two descriptors is assessed, which de-

scriptor follows another in time, whether one descriptor is (to which extent) causal for the oc-

currence of another, etc. In some approaches, (isolated) probabilities of occurrence for individ-

ual descriptors and (joint) probabilities for complete scenarios are also determined. However, 

with the above arguments, we advocate the use of occurrence possibilities instead of occurrence 

probabilities. 

                                                 

 

3 Descriptors whose development cannot be predicted with certainty are referred to as critical in scenario manage-

ment. 
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The construction and use of fuzzy logic based expert systems is also suitable for this purpose. 

Here, analogous to the procedure outlined above, the entry sensitivities of individual descriptor 

pairs are first assessed and then those of entire scenarios. The overall consistency and the overall 

possibility of each scenario can then be used to infer their overall relevance, respectively, in 

order to finally determine the set of scenarios to be selected. Given three descriptors 𝑖, 𝑗, and 𝑘 

and the linguistic terms 𝑣𝑙, 𝑙, 𝑚, ℎ, and 𝑣ℎ for overall consistency (�̃�𝑖𝑗𝑘) and 𝑙, 𝑚, and ℎ for 

overall possibility (�̃�𝑖𝑗𝑘), and 𝑣𝑙, 𝑙, 𝑚 and ℎ for the degrees of relevance of the scenarios (�̃�𝑖𝑗𝑘) 

can be determined based on the following rules (see table 1): 

Rule �̃�𝑖𝑗𝑘 �̃�𝑖𝑗𝑘 �̃�𝑖𝑗𝑘 

1 𝑣𝑙 𝑙 𝑣𝑙 
2 𝑣𝑙 𝑚 𝑣𝑙 
3 𝑣𝑙 ℎ 𝑣𝑙 
4 𝑙 𝑙 𝑙 
5 𝑙 𝑚 𝑙 
6 𝑙 ℎ 𝑙 
7 𝑚 𝑙 𝑙 
8 𝑚 𝑚 𝑚 

9 𝑚 ℎ 𝑚 

10 ℎ 𝑙 𝑚 

11 ℎ 𝑚 𝑚 

12 ℎ ℎ ℎ 

13 𝑣ℎ 𝑙 𝑚 
14 𝑣ℎ 𝑚 ℎ 

15 𝑣ℎ ℎ ℎ 
Table 1: Rule system for determining relevance levels of scenarios 

It is often recommended to defuzzify the fuzzy conclusions of the rule base (Piegat 2001) in 

order to arrive at unambiguous recommendations for action. The following example from the 

private everyday life of an apartment tenant shall serve as an explanation: 

He has an (implicit) fuzzy control system for regulating his heating. For example, one of the 

rules recommends him to set the heating thermostat to "quite high". In order to find out which 

temperature should be set concretely, defuzzification of the fuzzy rule conclusion is useful. 

How to perform such defuzzification will be discussed in the next section. 

2 Defuzzification methods 

2.1 Determination of the fuzzy output set 

Let 𝑋 = {𝑥} be a crisp base set of input values, 𝑥1 ∈ 𝑋 and 𝑥2 ∈ 𝑋 two crisp input values, 𝐴1̃, 

𝐴2̃ and 𝐴3̃ three linguistic input variables, and 𝜇�̃�1
(𝑥), 𝜇�̃�2

(𝑥) and 𝜇�̃�3
(𝑥) the corresponding 

membership functions. Besides, 𝑥1 = �̃�2 and 𝑥2 = �̃�3 are applied (see figure 3): 



10 

 

 

Figure 3: Sample membership functions with selected membership values 

For the DOF, if the minimum operator is chosen, applies: 

𝐷𝑂𝐹 = 𝑀𝑖𝑛(𝜇�̃�2
(𝑥1), 𝜇�̃�3

(𝑥2)) = 𝑀𝑖𝑛(0.25; 0.6) = 0.25 

For each active rule, the membership function 𝜇𝐶′(𝑦) of the respective inference is then created. 

For these applies again, when the minimum operator is used: 

𝜇𝐶′(𝑦) = 𝑇(𝐷𝑂𝐹; 𝜇𝐶′(𝑦)) = min (𝐷𝑂𝐹; 𝜇𝐶′(𝑦))  

For example, an active rule could be: IF 𝑥1 = �̃�2 THEN 𝑦 = �̃�2 

The following then holds for the train membership values 𝜇𝐶′(𝑦), given the input membership 

function from figure 3: 

𝜇𝐶′(𝑦) = 𝑀𝑖𝑛(0.25; 𝜇𝐶′(𝑦)) ∀𝑦 ∈ 𝑌 (see figure 4): 
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Figure 4: Membership functions of fuzzy outputs 

It can be seen that the membership function of the resulting output quantity of a single rule is 

cut off at the level of 𝐷𝑂𝐹 = 0.25. If several rules are active (𝐷𝑂𝐹 > 0), the resulting output 

set and its membership function must be formed over all active rules. The operators commonly 

used here include those from the area of 𝑠-norms. If, in addition to the already mentioned rule 

„IF 𝑥1 = �̃�2 THEN 𝑦 = �̃�2“ the rule „IF 𝑥1 = �̃�1 THEN 𝑦 = �̃�1“ is active, then, taking into 

account figure 3: 

𝜇𝑐𝑜𝑛𝑐(𝑦) = 𝑆 (𝜇�̃�1′
(𝑦); 𝜇�̃�2′

(𝑦)) 

and when using the maximum operator: 

𝜇𝑐𝑜𝑛𝑐(𝑦) = 𝑀𝑎𝑥 (𝜇�̃�1′
(𝑦); 𝜇�̃�2′

(𝑦)) 

An example is given in section 3. Once the fuzzy output set has been determined, it can be 

defuzzified (Van Leekwijck/Kerre 1999). Among others, maximum methods (Pedrycz 1993) 

(2.2) and the center of gravity method (Pedrycz 1993, Piegat 2001) (2.3) can be considered. 

 

2.2 Maximum methods 

Maximum methods include (a) the First-of-Maxima method, (b) the Last-of-Maxima method, 

(c) the Random-Choice-of-Maxima method, and (d) the Maximum-Mean method. 
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Ad (a): In this method, the lowest (or worst) abscissa value is chosen from the set of maximum 

abscissa values (see 𝑥∗ in figure 5) (Piegat 2001). 

 

Figure 5: Application of the First-of-Maxima method 

Ad (b): Here, the highest (or best) abscissa value is chosen from the set of maximum abscissa 

values (see 𝑥∗ in figure 6). 

 

Figure 6: Application of the Last-of-Maxima method 

Ad (c): Here, a suitable random mechanism is used to choose an abscissa value from the set of 

maximum abscissa values and thus any abscissa value between 𝑥𝑢
∗  and 𝑥𝑜

∗  (see figure 7). 
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Figure 7: Representation of the Random-Choice-of-Maxima method 

Ad (d): In this procedure, one chooses the arithmetic mean of the maximum abscissa values to 

defuzzify the output set (see 𝑥∗ in figure 8, with 𝑥∗ =
𝑥𝑢

∗ +𝑥𝑜
∗

2
 ) (Piegat 2001). 

 

Figure 8: Representation of the Maximum-Mean-Method 
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The maximum methods offer the advantage of relatively simple defuzzification. Whether to use 

them or to resort to more complex methods has to be decided depending on the situation. 

 

2.3 Center-of-Gravity method 

The center of gravity of a area can be understood as its "center point". Let us imagine a seesaw 

on a children's playground, which has two arms of equal length. If two children of the same 

weight (let the mass of a child be 𝑚𝑗 with 𝑗 = 1 and 𝑗 = 2 and 𝑚1 = 𝑚2; to simplify matters, 

the children are not considered as bodies but as points) are teetering on the seesaw, the seesaw 

will come into balance exactly when it is positioned exactly in the center (see figure 9). 

 

Figure 9: Graphic representation of a seesaw with center of gravity in the middle 

However, if one of the children is heavier than the other (e.g., 𝑚1 > 𝑚2), the seesaw center of 

gravity moves toward the heavier child (see figure 10). 

 

 

Figure 10: Graphical representation of a seesaw with shifted center of gravity 

In the physical sense, the center of gravity of a geometric figure can be interpreted as its center 

of mass. The center of gravity of the graph of a membership function is then the center of mass 

of the membership values. We are now looking for the centroid of area of the resulting mem-

bership function of the control output for the purpose of defuzzification. In order to be able to 

compute centroids, one must determine first of all the contents of the area. As is well known, 
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integral calculus is used for this purpose, especially for (at least partially) curved function 

graphs. 

To determine the area of a area 𝐴 (e.g. large rectangles in figure 11), it is divided into infinites-

imal strips 𝑑𝐴 and the integral is formed over these strips. 

According to this: 

𝐴 = ∫𝑑𝐴            (1) 

To do this, 𝐴 is divided into individual strips, one parallel to the abscissa and the other parallel 

to the ordinate. For the strips parallel to the abscissa, the area 𝑑𝐴 of the strips is obtained from 

the product of their height 𝑥 and their width 𝑑𝑦, while for the strips parallel to the ordinate, the 

corresponding area 𝑑𝐴 is obtained from the product of their height 𝑦 and their width 𝑑𝑥 (see 

figure 11). 

For the following statements applies in our notation 𝑦 = 𝑓(𝑥) = 𝜇(𝑥). 

 

Figure 11: Graphical representation of basic considerations for integral calculus 

The membership function of a fuzzy interval is trapezoidal (see figure 12). 

 

Figure 12: Graphical representation of an area-decomposed fuzzy interval 
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Such a trapezoid can be decomposed into a rectangle and two triangles. When using fuzzy 

numbers, the graph of the membership function is exclusively triangular. If the triangular area 

is also decomposed into strips, rectangles are obtained which end either above or below the 

membership function. In the first case, the rectangle includes an excess part of the relevant area, 

whereas in the second case, a relevant piece of area is missing (see figure 13). 

 

Figure 13: Decomposition of a fuzzy number into pieces 

The width of the horizontal and vertical stripes is then let become infinitesimal, so that one 

arrives at 𝑑𝑥 and 𝑑𝑦, respectively. 

Thus, to determine an integral with integration over the abscissa, 𝑑𝐴 = 𝑦 𝑑𝑥 and over the ordi-

nate 𝑑𝐴 = 𝑥 𝑑𝑦 holds. 

The following equations can be used to determine the coordinates of the center of area 

(𝑥𝑐𝑜𝑔|𝑦𝑐𝑜𝑔) and with recourse to the boundaries of the exemplary rectangles (𝑤𝑢𝑏 − 𝑤𝑙𝑏 re-

spectively ℎ𝑢𝑏 − ℎ𝑙𝑏) shown above: 

𝑥𝑐𝑜𝑔 =
∫𝑥𝑑𝐴

∫𝑑𝐴
=

∫ 𝑥
𝑤𝑢𝑏
𝑤𝑙𝑏 𝑑𝐴

∫ 𝑑𝐴
𝑤𝑢𝑏
𝑤𝑙𝑏

          (2) 

𝑦𝑐𝑜𝑔 =
∫𝑦𝑑𝐴

∫𝑑𝐴
=

∫ 𝑦𝑑𝐴
ℎ𝑢𝑏
ℎ𝑙𝑏

∫ 𝑑𝐴
ℎ𝑢𝑏
ℎ𝑙𝑏

          (3) 

Here ∫𝑑𝐴 corresponds to the area of all infinitesimal strips and ∫ 𝑥 𝑑𝐴 respectively ∫𝑦 𝑑𝐴 to 

the area of all infinitesimal strips to be formed, taking into account the distance of the centroid 

𝑥 respectively 𝑦 of the subarea from the reference edge. 

The centroid of the area thus results from the quotient of the sum of the partial areas weighted 

with 𝑥 respectively 𝑦 on the one hand and the total area on the other. 
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Referring back to figure 11, it is valid for the computational equations to determine the abscissa 

coordinate ∫𝑑𝐴 = ∫𝑦 𝑑𝑥 and ∫𝑥 𝑑𝐴 = ∫𝑥 𝑦 𝑑𝑥, respectively the ordinate coordinate ∫𝑑𝐴 =

∫𝑥 𝑑𝑦 and ∫ 𝑦 𝑑𝐴 = ∫𝑦 𝑥 𝑑𝑦. 

Above calculation equations can be adapted accordingly to 

𝑥𝑐𝑜𝑔 =
∫𝑥𝑑𝐴

∫𝑑𝐴
=

∫𝑥 𝑦 𝑑𝑥

∫𝑦 𝑑𝑥
          (4) 

for the determination of the abscissa coordinate respectively to 

𝑦𝑐𝑜𝑔 =
∫𝑦𝑑𝐴

∫𝑑𝐴
=

∫𝑦 𝑥 𝑑𝑦

∫𝑥 𝑑𝑦
          (5) 

for the determination of the ordinate coordinate. 

Table 2 summarizes the basic computational equations for determining centroid of area coordi-

nates. 

Determination of the abscissa coordinate of 

the centroid of the area 

Determination of the ordinate coordinate of 

the centroid of the area 

The area results from 

𝐴 = ∫𝑑𝐴 

and with 

𝑑𝐴 = 𝑦 𝑑𝑥 𝑑𝐴 = 𝑥 𝑑𝑦 

applies: 

∫𝑑𝐴 = ∫𝑦 𝑑𝑥 ∫𝑑𝐴 = ∫𝑥 𝑑𝑦 

∫𝑥 𝑑𝐴 = ∫𝑥 𝑦 𝑑𝑥 ∫𝑦 𝑑𝐴 = ∫𝑦 𝑥 𝑑𝑦 

and thus for the determination of the coordinates: 

𝑥𝑐𝑜𝑔 =
∫𝑥 𝑑𝐴

∫𝑑𝐴
=

∫𝑥 𝑦 𝑑𝑥

∫𝑦 𝑑𝑥
 𝑦𝑐𝑜𝑔 =

∫𝑦 𝑑𝐴

∫𝑑𝐴
=

∫𝑦 𝑥 𝑑𝑦

∫ 𝑥 𝑑𝑦
 

Table 2: Summary of the basic calculation equations for the determination of centroidal coordinates of areas 

If the area under consideration is a rectangle with the shape shown in figure 11, the following 

simplification can be used, which results from the fact that the width of the rectangle (𝑤𝑢𝑏 −

𝑤𝑙𝑏) and the height of the rectangle (ℎ𝑢𝑏 − ℎ𝑙𝑏) are constant and vary neither in the ordinate 

nor in the abscissa direction. Accordingly, 𝑥𝑐𝑜𝑔 =
∫𝑥 𝑦 𝑑𝑥

∫𝑦 𝑑𝑥
 can be substituted with 𝑥𝑐𝑜𝑔 =

∫𝑥 (ℎ𝑢𝑏−ℎ𝑙𝑏)𝑑𝑥

∫(ℎ𝑢𝑏−ℎ𝑙𝑏) 𝑑𝑥
 respectively 𝑦𝑐𝑜𝑔 =

∫𝑦 𝑥 𝑑𝑦

∫𝑥 𝑑𝑦
 with 𝑦𝑐𝑜𝑔 =

∫𝑦 (𝑤𝑢𝑏−𝑤𝑙𝑏) 𝑑𝑦

∫(𝑤𝑢𝑏−𝑤𝑙𝑏) 𝑑𝑦
. 

 

Given an assumed height (ℎ𝑢𝑏 − ℎ𝑙𝑏) and an assumed width (𝑤𝑢𝑏 − 𝑤𝑙𝑏) of a rectangle, we 

then integrate over the integral boundaries 𝑤𝑙𝑏 and 𝑤𝑢𝑏 respectively ℎ𝑙𝑏 and ℎ𝑢𝑏 in the ab-

scissa direction respectively in the ordinate direction. 
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𝑥𝑐𝑜𝑔 =
∫𝑥𝑑𝐴

∫𝑑𝐴
=

∫𝑥 𝑦 𝑑𝑥

∫𝑦 𝑑𝑥
=  

∫𝑥 (ℎ𝑢𝑏−ℎ𝑙𝑏)𝑑𝑥

∫(ℎ𝑢𝑏−ℎ𝑙𝑏)𝑑𝑥
=

1

2
𝑥2(ℎ𝑢𝑏−ℎ𝑙𝑏)|𝑤𝑙𝑏

𝑤𝑢𝑏

𝑥(ℎ𝑢𝑏−ℎ𝑙𝑏)|𝑤𝑙𝑏
𝑤𝑢𝑏 =  

=
1

2
𝑤𝑢𝑏2(ℎ𝑢𝑏−ℎ𝑙𝑏)−

1

2
𝑤𝑙𝑏2(ℎ𝑢𝑏−ℎ𝑙𝑏)

𝑤𝑢𝑏(ℎ𝑢𝑏−ℎ𝑙𝑏)−𝑤𝑙𝑏(ℎ𝑢𝑏−ℎ𝑙𝑏)
             (6) 

 

𝑦𝑐𝑜𝑔 =
∫𝑦𝑑𝐴

∫𝑑𝐴
=

∫𝑦 𝑥 𝑑𝑦

∫𝑥 𝑑𝑦
= 

∫𝑦 (𝑤𝑢𝑏−𝑤𝑙𝑏)𝑑𝑦

∫(𝑤𝑢𝑏−𝑤𝑙𝑏)𝑑𝑦
=

1

2
𝑦2(𝑤𝑢𝑏−𝑤𝑙𝑏)|ℎ𝑙𝑏

ℎ𝑢𝑏

𝑦(𝑤𝑢𝑏−𝑤𝑙𝑏)|ℎ𝑙𝑏
ℎ𝑢𝑏 =  

=
1

2
ℎ𝑢𝑏2(𝑤𝑢𝑏−𝑤𝑙𝑏)−

1

2
ℎ𝑙𝑏2(𝑤𝑢𝑏−𝑤𝑙𝑏)

ℎ𝑢𝑏(𝑤𝑢𝑏−𝑤𝑙𝑏)−ℎ𝑙𝑏(𝑤𝑢𝑏−𝑤𝑙𝑏)
             (7) 

3 Exemplary determination of the centroid of area of a fuzzy output set for 

fuzzy input sets with continuous triangular or trapezoidal membership func-

tions 

3.1 Preliminary remarks 

We will now assume here two fuzzy input sets in terms of fuzzy numbers �̃� and �̃�, whose 

(triangular) membership functions are as follows: 

𝜇�̃�(𝑥) = {

1 −
5−𝑥

3
  𝑓ü𝑟 2 ≤ 𝑥 ≤ 5

1 −
𝑥−5

4
   𝑓ü𝑟 5 < 𝑥 ≤ 9

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (8.1) 

𝜇�̃�(𝑥) = {

1 −
11−𝑥

3
  𝑓ü𝑟 8 ≤ 𝑥 ≤ 11

1 −
𝑥−11

2
   𝑓ü𝑟 11 < 𝑥 ≤ 13

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (9.1) 

 

Their transformation leads to: 

𝜇�̃�(𝑥) = {

−
2

3
+

1

3
𝑥   𝑓ü𝑟 2 ≤ 𝑥 ≤ 5

9

4
−

1

4
𝑥   𝑓ü𝑟 5 < 𝑥 ≤ 9

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (8.2) 

𝜇�̃�(𝑥) = {

−
8

3
+

1

3
𝑥   𝑓ü𝑟 8 ≤ 𝑥 ≤ 11

13

2
−

1

2
𝑥   𝑓ü𝑟 11 < 𝑥 ≤ 13

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (9.2) 

 

The graph of the membership function of the resulting fuzzy output set 𝜇𝑐𝑜𝑛𝑐(𝑥) follows the 

bold line in figure 14 in our example. 
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Figure 14: Graphical representation of the membership functions 

As shown in figure 14, the entire membership function can be divided into six areas 𝑖 with 𝐼 ≔

{𝑖|𝑖 = 1,… ,6} (triangles and rectangles). 

 

3.2 Determination of centroid of area on the basis of integral calculus 

3.2.1 Determination of the abscissa coordinate of the centroid of the area 

The general equation of determination for calculating the abscissa coordinate of a centroid of a 

single area is: 

𝑥𝑐𝑜𝑔 =
∫𝑥𝑑𝐴

∫𝑑𝐴
=

∫𝑥 𝑦 𝑑𝑥

∫𝑦 𝑑𝑥
         (4) 

Recalling the use of a notation in terms of membership functions, this leads to the following 

determination equation: 

𝑥𝑐𝑜𝑔 =
∫ 𝑥⋅𝜇𝑐𝑜𝑛𝑐(𝑥) 𝑑𝑥
𝑤𝑢𝑏
𝑤𝑙𝑏

∫ 𝜇𝑐𝑜𝑛𝑐(𝑥)
𝑤𝑢𝑏
𝑤𝑙𝑏 𝑑𝑥

                   (10.1) 

Since the presented fuzzy output set is characterized by six different function courses, a decom-

position of the integral into six partial integrals is performed. With recourse to the use of a 

notation in the sense of membership functions, this leads to the following equation of determi-

nation of individual centroids: 

𝑥𝑐𝑜𝑔
𝑖 =

∫ 𝑥𝑖⋅𝜇𝑐𝑜𝑛𝑐(𝑥) 𝑑𝑥
𝑤𝑢𝑏
𝑤𝑙𝑏

∫ 𝜇𝑐𝑜𝑛𝑐(𝑥)
𝑤𝑢𝑏
𝑤𝑙𝑏 𝑑𝑥

   ∀𝑖 ∈ 𝐼                  (10.2) 

Following the determination of individual area centroids, the identified expressions for numer-

ator and denominator of the quotient shown above can be aggregated to determine 𝑥𝑐𝑜𝑔: 
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𝑥𝑐𝑜𝑔 =
∫ 𝑥𝑖⋅𝜇𝑐𝑜𝑛𝑐(𝑥) 𝑑𝑥
𝑤𝑢𝑏
𝑤𝑙𝑏

∫ 𝜇𝑐𝑜𝑛𝑐(𝑥)
𝑤𝑢𝑏
𝑤𝑙𝑏 𝑑𝑥

=
∑ [∫ 𝑥⋅𝜇𝑐𝑜𝑛𝑐(𝑥)𝑑𝑥

𝑤𝑢𝑏
𝑤𝑙𝑏 ]

𝑖

6
𝑖=1

∑ [∫ 𝜇𝑐𝑜𝑛𝑐(𝑥)𝑑𝑥
𝑤𝑢𝑏
𝑤𝑙𝑏 ]

𝑖

6
𝑖=1

                (10.3) 

 

For each partial integral, we first determine the abscissa coordinate of the centroid of the area: 

 

Section 𝒊 = 𝟏: 

 

Figure 15: Consideration of section 𝑖 = 1 

 

𝑥𝑐𝑜𝑔
𝑖=1 =

∫ 𝑥 ⋅ (−
2
3 +

1
3𝑥) 𝑑𝑥

3.8

2

∫ (−
2
3 +

1
3𝑥) 𝑑𝑥

3.8

2

=
−

1
3𝑥2 +

1
9𝑥3|2

3.8

−
2
3𝑥 +

1
6𝑥2|2

3.8

=
(−

1
3 ⋅ 3.82 +

1
9 ⋅ 3.83) − (−

1
3 ⋅ 22 +

1
9 ⋅ 23)

(−
2
3 ⋅ 3.8 +

1
6 ⋅ 3.82) − (−

2
3 ⋅ 2 +

1
6 ⋅ 22)

=
1.728

0.54
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Section 𝒊 = 𝟐: 

 

Figure 16: Consideration of section 𝑖 = 2 

 

𝑥𝑐𝑜𝑔
𝑖=2 =

∫ 𝑥 ⋅ 0.6 𝑑𝑥
6.6

3.8

∫ 0.6 𝑑𝑥
6.6

3.8

=
0.3𝑥2|3.8

6.6

0.6𝑥|3.8
6.6 =

8.736

1.68
 

Section 𝒊 = 𝟑: 

 

Figure 17: Consideration of section 𝑖 = 3 
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𝑥𝑐𝑜𝑔
𝑖=3 =

∫ 𝑥 ⋅ (
9
4

−
1
4
𝑥) 𝑑𝑥

8.43

6.6

∫ (
9
4 −

1
4𝑥) 𝑑𝑥

8.43

6.6

=
1.125𝑥2 −

1
12

𝑥3|6.6
8.43

9
4 𝑥 −

1
8 𝑥2|6.6

8.43
=

4.978

0.679
 

 

Section 𝒊 = 𝟒: 

 

Figure 18: Consideration of section 𝑖 = 4 

𝑥𝑐𝑜𝑔
𝑖=4 =

∫ 𝑥 ⋅ (−
8
3 +

1
3𝑥) 𝑑𝑥

8.75

8.43

∫ (−
8
3 +

1
3𝑥) 𝑑𝑥

8.75

8.43

=
−

4
3𝑥2 +

1
9𝑥3|8.43

8.75

−
8
3𝑥 +

1
6𝑥2|8.43

8.75
=

0.542

0.063
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Section 𝒊 = 𝟓: 

 

Figure 19: Consideration of section 𝑖 = 5 

 

𝑥𝑐𝑜𝑔
𝑖=5 =

∫ 𝑥 ⋅ 0.25 𝑑𝑥
12.5

8.75

∫ 0.25 𝑑𝑥
12.5

8.75

=
0.125𝑥2|8.75

12.5

0.25𝑥|8.75
12.5 =

9.961

0.938
 

Section 𝒊 = 𝟔: 

 

Figure 20: Consideration of section 𝑖 = 6 
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𝑥𝑐𝑜𝑔
𝑖=6 =

∫ 𝑥 ⋅ (
13
2

−
1
2
𝑥) 𝑑𝑥

13

12.5

∫ (
13
2 −

1
2𝑥) 𝑑𝑥

13

12.5

=
3.25𝑥2 −

1
6
𝑥3|12.5

13

6.5𝑥 −
1
4 𝑥2|12.5

13
=

0.792

0.063
 

The additive combination of the expressions then leads to the determination of the abscissa 

coordinate of the centroid 𝑥𝑐𝑜𝑔 of the area of the fuzzy output set. Using the aggregation rule 

(10.3) already described above, we obtain: 

 

𝑥𝑐𝑜𝑔 =
∑ [∫ 𝑥 ⋅ 𝜇𝑐𝑜𝑛𝑐(𝑥)𝑑𝑥

𝑤𝑢𝑏

𝑤𝑙𝑏
]
𝑖

6
𝑖=1

∑ [∫ 𝜇𝑐𝑜𝑛𝑐(𝑥)𝑑𝑥
𝑤𝑢𝑏

𝑤𝑙𝑏
]
𝑖

6
𝑖=1

= 

=
1.728 + 8.736 + 4.978 + 0.542 + 9.961 + 0.792

0.54 + 1.68 + 0.679 + 0.063 + 0.938 + 0.063
=

26.737

3.963
≈ 6.75 

 

Following the determination of the abscissa coordinate of the centroid of the area, the ordinate 

coordinate can now be determined. 

 

3.2.2 Determination of the ordinate coordinate of the centroid of the area 

The general equation of determination (5) for calculating the ordinate coordinate of a centroid 

of an area is: 

𝑦𝑐𝑜𝑔 =
∫𝑦𝑑𝐴

∫𝑑𝐴
=

∫𝑦 𝑥 𝑑𝑦

∫𝑥 𝑑𝑦
              (5) 

To apply this determination equation, the inverse functions of 𝜇𝑐𝑜𝑛𝑐(𝑥) must first be formed 

for relevant partial integrals. 

Recalling the use of a notation in terms of membership functions, this then leads to the follow-

ing determinant equation: 

𝜇(𝑥𝑐𝑜𝑔
𝑖 ) =

∫ 𝜇(𝑥)⋅𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) 𝑑𝜇(𝑥)

ℎ𝑢𝑏
ℎ𝑙𝑏

∫ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥)

ℎ𝑢𝑏
ℎ𝑙𝑏

𝑑𝜇(𝑥)
   ∀𝑖 ∈ 𝐼                 (11.1) 

 

Note: 

The pure consideration of the inverse function would lead to the integration of the area between 

ordinate and function (dotted, red area in figure 21). However, for the determination of the 

ordinate coordinate of the centroid of the area, the consideration of the area between two func-

tion areas is relevant. This means that for section 𝑖 = 1, the vertically hatched area is of interest, 

but not the area marked in red (see figure 21). Accordingly, when using the inverse function, 
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care must be taken to use it only for the area up to 𝑥 = 3.8. This is achieved by subtracting the 

inverse function from the "limiting function". 

 

Figure 21: Note on the ordinate determination of a centroid of an area 

Section 𝒊 = 𝟏: 

 

Figure 22: Consideration of section 𝑖 = 1 
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Origin function: 

𝜇𝑐𝑜𝑛𝑐(𝑥) = −
2

3
+

1

3
𝑥 

Inverse function: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = 3 ⋅ 𝜇(𝑥) + 2 

 

Limitation at 𝑥 = 3.8 leads to: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = 3.8 − (3 ⋅ 𝜇(𝑥) + 2)

= 1.8 − 3 ⋅ 𝜇(𝑥) 

 

 

𝜇(𝑥𝑐𝑜𝑔
𝑖=1) =

∫ 𝜇(𝑥) ⋅ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) 𝑑𝜇(𝑥)

0.6

0

∫ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) 𝑑𝜇(𝑥)

0.6

0

=
∫ 𝜇(𝑥) ⋅ (1.8 − 3 ⋅ 𝜇(𝑥))𝑑𝜇(𝑥)

0.6

0

∫ (1.8 − 3 ⋅ 𝜇(𝑥))𝑑𝜇(𝑥)
0.6

0

=
∫ (−3 ⋅ 𝜇(𝑥)2 + 1.8 ⋅ 𝜇(𝑥)) 𝑑𝜇(𝑥)

0.6

0

∫ (−3 ⋅ 𝜇(𝑥) + 1.8) 𝑑𝜇(𝑥)
0.6

0

=
−𝜇(𝑥)3 + 0.9𝜇(𝑥)2|0

0.6

−
3
2
𝜇(𝑥)2 + 1.8𝜇(𝑥)|0

0.6

=
−0.63 + 0.9 ⋅ 0.62

−
3
2 ⋅ 0.62 + 1.8 ⋅ 0.6

=
0.108

0.54
 

Section 𝒊 = 𝟐: 

 

Figure 23: Consideration of section 𝑖 = 2 

The formation of an inverse function is not necessary in this section. Using the simplification 

described above in the case of rectangles with constant widths and heights, the ordinate coor-

dinate 𝜇(𝑥𝑐𝑜𝑔
𝑖=2) can be determined as follows: 

 

𝜇(𝑥𝑐𝑜𝑔
𝑖=2)  =

∫𝜇(𝑥) 𝑑𝐴

∫𝑑𝐴
=

∫𝜇(𝑥) ⋅ 𝜇(𝑥𝑐𝑜𝑛𝑐
−1 ) 𝑑𝜇(𝑥)

∫ 𝑥 𝑑𝜇(𝑥)
=  

∫ 𝜇(𝑥) ⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏)𝑑𝜇(𝑥)

∫(𝑤𝑢𝑏 − 𝑤𝑙𝑏) 𝑑𝜇(𝑥)
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With (𝑤𝑢𝑏 − 𝑤𝑙𝑏) as the width of the rectangle and thus (𝑤𝑢𝑏 − 𝑤𝑙𝑏) = 6.6 − 3.8 = 2.8 and 

(ℎ𝑢𝑏 − ℎ𝑙𝑏) as the height of the rectangle and thus (ℎ𝑢𝑏 − ℎ𝑙𝑏) = 0.6 − 0 holds: 

𝜇(𝑥𝑐𝑜𝑔
𝑖=2) =

∫ 𝜇(𝑥) ⋅ 2.8 𝑑𝜇(𝑥)

∫ 2.8 𝑑𝜇(𝑥)
=

1.4𝜇(𝑥)2|0
0.6

2.8𝜇(𝑥) |0
0.6 =

1.4 ⋅ 0.62

2.8 ⋅ 0.6
=

0.504

1.68
 

 

Section 𝒊 = 𝟑: 

 

Figure 24: Consideration of section 𝑖 = 3 

Section 𝑖 = 3 is to be divided into two parts (triangle and rectangle). 

Accordingly, both a triangle (𝐴𝑖=3|1; vertically hatched area in figure 25) and a rectangle 

(𝐴𝑖=3|2; tiled area in figure 25) result as partial areas of the section. 
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Figure 25: Decomposition of section 𝑖 = 3 in partial areas 

For the boundary of the triangle, this encloses the area between 𝑥 = 6.6 and 𝑥 = 8.43. 

Accordingly, the following modification of the inverse function results. 

 

Origin function: 

𝜇𝑐𝑜𝑛𝑐(𝑥) =
9

4
−

1

4
𝑥 

Inverse function: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = 9 − 4𝜇(𝑥) 

 

Limitation at 𝑥 = 6.6 leads to: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = 9 − 4𝜇(𝑥) − 6.6

= 2.4 − 4𝜇(𝑥) 

 

Determination of the ordinate coordinate of the centroid of the triangle's area 𝐴𝑖=3|1: 

𝜇(𝑥𝑐𝑜𝑔
𝑖=3|1

) =
∫ 𝜇(𝑥) ⋅ 𝜇𝑐𝑜𝑛𝑐

−1 (𝑥) 𝑑𝜇(𝑥)
0.6
1
7

∫ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) 𝑑𝜇(𝑥)

0.6
1
7

=
∫ 𝜇(𝑥) ⋅ (2.4 − 4𝜇(𝑥))𝑑𝜇(𝑥)

0.6
1
7

∫ (2.4 − 4𝜇(𝑥))𝑑𝜇(𝑥)
0.6
1
7

=
∫ (2.4𝜇(𝑥) − 4𝜇(𝑥)2)𝑑𝜇(𝑥)

0.6
1
7

∫ (2.4 − 4𝜇(𝑥)) 𝑑𝜇(𝑥)
0.6
1
7

=

1.2𝜇(𝑥)2 −
4
3𝜇(𝑥)3|1

7

0.6

2.4𝜇(𝑥) − 2𝜇(𝑥)2|1
7

0.6 =
0.123

0.418
 

 

Determination of the ordinate coordinate of the center of area of the rectangle 𝐴𝑖=3|2: 

The formation of an inverse function is not necessary in this section. Using the simplification 

described above in the case of rectangles with constant widths and heights, the ordinate coor-

dinate of the rectangle 𝜇(𝑥𝑐𝑜𝑔
𝑖=3) can be determined as follows: 
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With (𝑤𝑢𝑏 − 𝑤𝑙𝑏) as the width of the rectangle and thus (𝑤𝑢𝑏 − 𝑤𝑙𝑏) = 8.43 − 6.6 = 1.83 

and (ℎ𝑢𝑏 − ℎ𝑙𝑏) as the height of the rectangle and thus (ℎ𝑢𝑏 − ℎ𝑙𝑏) = 1/7 − 0 holds: 

𝜇(𝑥𝑐𝑜𝑔
𝑖=3|2

) =
∫ 𝜇(𝑥) ⋅ 1.83 𝑑𝜇(𝑥)

∫ 1.83 𝑑𝜇(𝑥)
=

0.915𝜇(𝑥)2|0

1
7

1.83𝜇(𝑥) |0

1
7

=

183
9800

0.2614
=

0.019

0.261
 

 

Aggregated, the ordinate coordinate of the centroid of area of section 𝑖 = 3 is thus valid: 

𝜇(𝑥𝑐𝑜𝑔
𝑖=3) =

0.123 + 0.019

0.418 + 0.261
=

0.142

0.679
 

Section 𝒊 = 𝟒: 

 

Figure 26: Consideration of section 𝑖 = 4 

Section 𝑖 = 4 is also to be divided into two parts (triangle 𝐴𝑖=4|1 and rectangle 𝐴𝑖=4|2) in anal-

ogy to section 𝑖 = 3. 

For the boundary of the triangle it is valid that this encloses the area between 𝑥 = 8.43 and 𝑥 =

8.75. 

Accordingly the following modification of the inverse function results. 
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Origin function: 

𝜇𝑐𝑜𝑛𝑐(𝑥) = −
8

3
+

1

3
𝑥 

Inverse function: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = 8 + 3𝜇(𝑥) 

 

Limitation at 𝑥 = 8.75 leads to: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = 8.75 − (3𝜇(𝑥) + 8)

= 0.75 − 3𝜇(𝑥) 

 

Determination of the ordinate coordinate of the centroid of the triangle's area 𝐴𝑖=4|1: 

𝜇(𝑥𝑐𝑜𝑔
𝑖=4|1

) =
∫ 𝜇(𝑥) ⋅ 𝜇𝑐𝑜𝑛𝑐

−1 (𝑥) 𝑑𝜇(𝑥)
0.25
1
7

∫ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) 𝑑𝜇(𝑥)

0.25
1
7

=
∫ 𝜇(𝑥) ⋅ (0.75 − 3𝜇(𝑥))𝑑𝜇(𝑥)

0.25
1
7

∫ (0.75 − 3𝜇(𝑥))𝑑𝜇(𝑥)
0.25
1
7

=

∫ (0.75𝜇(𝑥) − 3𝜇(𝑥)2)𝑑𝜇(𝑥)
0.25
1
7

∫ (0.75 − 3𝜇(𝑥)) 𝑑𝜇(𝑥)
0.25
1
7

=

0.375𝜇(𝑥)2 − 𝜇(𝑥)3|1
7

0.25

0.75𝜇(𝑥) − 1.5𝜇(𝑥)2|1
7

0.25 =
0.003

0.017
 

 

Determination of the ordinate coordinate of the center of area of the rectangle 𝐴𝑖=4|2: 

The formation of an inverse function is not necessary in this section. Using the simplification 

described above in the case of rectangles with constant widths and heights, the ordinate coor-

dinate of the rectangle 𝜇(𝑥𝑐𝑜𝑔
𝑖=4|2

) can be determined as follows. 

With (𝑤𝑢𝑏 − 𝑤𝑙𝑏) as the width of the rectangle and thus (𝑤𝑢𝑏 − 𝑤𝑙𝑏) = 8.75 − 8.43 = 0.32 

and (ℎ𝑢𝑏 − ℎ𝑙𝑏) as the height of the rectangle and thus (ℎ𝑢𝑏 − ℎ𝑙𝑏) = 1/7 − 0 holds: 

𝜇(𝑥𝑐𝑜𝑔
𝑖=4|2

) =
∫𝜇(𝑥) ⋅ 0.32 𝑑𝜇(𝑥)

∫ 0.32𝑑𝜇(𝑥)
=

0.16𝜇(𝑥)2|0

1
7

0.32𝜇(𝑥) |0

1
7

=

4
1225

8
175

=
0.003

0.046
 

 

Aggregated, the ordinate coordinate of the centroid of area of section 𝑖 = 4 is thus valid: 

𝜇(𝑥𝑐𝑜𝑔
𝑖=4) =

0.003 + 0.003

0.017 + 0.046
=

0.006

0.063
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Section 𝒊 = 𝟓: 

 

 

Figure 27: Consideration of section 𝑖 = 5 

The formation of an inverse function is also not necessary in this section. Using the simplifica-

tion described above, with (𝑤𝑢𝑏 − 𝑤𝑙𝑏) = 12.5 − 8.75 = 3.75 as the width and (ℎ𝑢𝑏 −

ℎ𝑙𝑏) = 0.25 − 0 = 0.25 as the height of the rectangle, it applies: 

 

𝜇(𝑥𝑐𝑜𝑔
𝑖=5) =

∫𝜇(𝑥) ⋅ 3.75 𝑑𝜇(𝑥)

∫ 3.75 𝑑𝜇(𝑥)
=

1.875𝜇(𝑥)2|0
0.25

3.75𝜇(𝑥) |0
0.25 =

1.875 ⋅ 0.252

3.75 ⋅ 0.25
=

0.117

0.938
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Section 𝒊 = 𝟔: 

 

Figure 28: Consideration of section 𝑖 = 6 

 

Origin function: 

𝜇𝑐𝑜𝑛𝑐(𝑥) =
13

2
−

1

2
𝑥 

Inverse function: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = 13 − 2𝜇(𝑥) 

 

Limitation at 𝑥 = 12.5 leads to: 

𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) = (13 − 2𝜇(𝑥) − 12.5)

= 0.5 − 2𝜇(𝑥) 

 

 

𝜇(𝑥𝑐𝑜𝑔
𝑖=6) =

∫ 𝜇(𝑥) ⋅ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) 𝑑𝜇(𝑥)

0.25

0

∫ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥) 𝑑𝜇(𝑥)

0.25

0

=
∫ 𝜇(𝑥) ⋅ (0.5 − 2 ⋅ 𝜇(𝑥))𝑑𝜇(𝑥)

0.25

0

∫ (0.5 − 2 ⋅ 𝜇(𝑥))𝑑𝜇(𝑥)
0.25

0

=
∫ (0.5𝜇(𝑥) − 2𝜇(𝑥)2) 𝑑𝜇(𝑥)

0.25

0

∫ (0.5 − 2𝜇(𝑥)) 𝑑𝜇(𝑥)
0.25

0

=
−

2
3𝜇(𝑥)3 + 0.25𝜇(𝑥)2|0

0.25

0.5𝜇(𝑥) − 𝜇(𝑥)2|0
0.25 =

0.005

0.063
 

 

The aggregation of the expressions leads to the determination of the ordinate coordinate of the 

centroid 𝜇(𝑥𝑐𝑜𝑔) of the area of the fuzzy output set: 

𝜇(𝑥𝑐𝑜𝑔) =
∑ [∫ 𝜇(𝑥)⋅𝜇𝑐𝑜𝑛𝑐

−1 (𝑥)𝑑𝜇(𝑥)
ℎ𝑢𝑏
ℎ𝑙𝑏

]
𝑖

6
𝑖=1

∑ [∫ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥)𝑑𝜇(𝑥)

ℎ𝑢𝑏
ℎ𝑙𝑏 ]

𝑖

6
𝑖=1

                  (11.2) 

In concrete terms, this means: 
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𝜇(𝑥𝑐𝑜𝑔) =
∑ [∫ 𝜇(𝑥) ⋅ 𝜇𝑐𝑜𝑛𝑐

−1 (𝑥)𝑑𝜇(𝑥)
ℎ𝑢𝑏

ℎ𝑙𝑏
]
𝑖

6
𝑖=1

∑ [∫ 𝜇𝑐𝑜𝑛𝑐
−1 (𝑥)𝑑𝜇(𝑥)

ℎ𝑢𝑏

ℎ𝑙𝑏
]
𝑖

6
𝑖=1

=

=
0.108 + 0.504 + 0.142 + 0.006 + 0.117 + 0.005

0.54 + 1.68 + 0.679 + 0.063 + 0.938 + 0.063
=

0.882

3.963
≈ 0.222 

 

In summary, this results in table 3: 

Integral of 

section 𝑖 
𝑥𝑐𝑜𝑔

𝑖  Abscissa coordinate 

with isolated consid-

eration of the partial 

integral in section 𝑖 

𝜇(𝑥𝑐𝑜𝑔
𝑖 ) Ordinate coordinate 

when considering 

the partial integral 

in isolation in sec-

tion 𝑖 

1 
1.728

0.54
 3.2 

0.108

0.54
 0.2 

2 
8.736

1.68
 5.2 

0.504

1.68
 0.3 

3 
4.978

0.679
 7.33 

0.142

0.6794
 0.209 

4 
0.542

0.063
 8.6 

0.006

0.063
 0.095 

5 
9.961

0.938
 10.619 

0.117

0.938
 0.125 

6 
0.792

0.063
 12.57 

0.005

0.063
 0.079 

Table 3: Summary of the respective center of gravity coordinates of the partial integrals 

Thus, the coordinates of the centroid of the area for the fuzzy output set shown above are: 

𝑥𝑐𝑜𝑔 ≈ 6.75 and 𝜇(𝑥𝑐𝑜𝑔) ≈ 0.222. 

The abscissa coordinate of the center of gravity 𝑥𝑐𝑜𝑔 can be interpreted as the "average" value 

of the abscissa expressions. Accordingly, this abscissa coordinate unites the "mass" of the or-

dinate expressions in one point. Analogously, 𝜇(𝑥𝑐𝑜𝑔) can be understood as the "mean" mem-

bership value of the fuzzy output set. Ultimately, the mass of abscissa expressions is concen-

trated here on one membership value. Thus, in the centroid, both the mass of membership values 

of the fuzzy output set and the mass of abscissa expressions are concentrated. At this point, the 

fuzzy output set is therefore in an equilibrium position (by analogy with statics).  

We can insert these determined coordinates and the corresponding resulting centroid 𝐶𝑂𝐺 into 

the representation of the fuzzy output set for illustrative purposes (see figure 29). 
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Figure 29: Graphical representation of membership functions with associated centroid of area of the fuzzy out-

put set 

 

3.3 Simplified centroid determination 

In section 3.2, we focus on the application of the integral calculus for the determination of 

centroidal coordinates in order to show (in general) how to determine them for (at least piece-

wise) curved and for linear membership functions. Although we restrict ourselves in this con-

tribution to the representation of linear membership function courses, the integral calculus has 

the advantage that it is applicable without modification also to function courses of non-linear 

form (e.g. power functions of higher order or root functions). When using purely linear function 

progressions, however, a simplified determination of the centroid of area can be carried out. 

With recourse to the above example the coordinates of the centroid can be determined as fol-

lows: 

𝑥𝑐𝑜𝑔 =
∑ 𝑥𝑐𝑜𝑔

𝑖 ⋅𝐴𝑖
6
𝑖=1

∑ 𝐴𝑖
6
𝑖=1

          (12) 

 

𝜇(𝑥𝑐𝑜𝑔) =
∑ 𝜇(𝑥𝑐𝑜𝑔

𝑖 )⋅𝐴𝑖
6
𝑖=1

∑ 𝐴𝑖
6
𝑖=1

         (13) 

 

Here 𝐴𝑖 corresponds to the area of the considered subarea 𝑖 and 𝑥𝑐𝑜𝑔
𝑖  respectively 𝜇(𝑥𝑖

𝑐𝑜𝑔
) to 

the abscissa respectively ordinate coordinate of the centroid of section 𝑖. 
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It is not difficult to see that this form of representation corresponds only to a modified form of 

notation compared to the above representation of the integral notation. The simplification re-

sults from the fact that we do not fall back now for the determination of the area centroid coor-

dinates on the integral calculation, but use rather simple equations for the determination of area 

contents and area centroids. 

We will now illustrate this simplified procedure for determining the centroid of an area with 

reference to the above example: 

 

Section 𝒊 = 𝟏 

Determination of the area of the triangular area 𝐴𝑖=1 

𝐴𝑖=1 =
1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
⋅ (3.8 − 2) ⋅ 0.6 = 0.54 

Determination of the centroid coordinates of the area 𝐴𝑖=1 

To determine the centroid of the area of a right triangle and the coordinates of three vertices 

𝐴, 𝐵, and 𝐶 [(𝑥𝐴|𝑦𝐴), (𝑥𝐵|𝑦𝐵), (𝑥𝐶|𝑦𝐶)] , we can refer to the following determination rule in 

our notation: 

(𝑥𝑐𝑜𝑔
𝑖=1|𝜇(𝑥)𝑐𝑜𝑔

𝑖=1) =
1

3
⋅ (

𝑥𝐴
𝑖=1 + 𝑥𝐵

𝑖=1 + 𝑥𝐶
𝑖=1

𝜇(𝑥𝐴
𝑖=1) + 𝜇(𝑥𝐵

𝑖=1) + 𝜇(𝑥𝐶
𝑖=1)

) =
1

3
⋅ (

2 + 3.8 + 3.8
0 + 0 + 0.6

) = (
3.2
0.2

) 

Thus, for the coordinates of the centroid of the subarea 𝑖 = 1 applies: 

𝑥𝑐𝑜𝑔
𝑖=1 = 3.2 und 𝜇(𝑥)𝑐𝑜𝑔

𝑖=1 = 0.2 

 

The derivation of the usability of this quite simple determination of the centroid coordinates of 

a triangle we want to present briefly for didactic reasons. For this purpose we will use a triangle 

with the three coordinates 𝐴(2|0), 𝐵(8|0), and 𝐶(4|1) (see figure 30): 
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Figure 30: Graphical representation of a triangle with coordinates A, B, and C 

The coordinates of the triangle can be represented as location vectors as follows: 

𝑂𝐴⃗⃗⃗⃗  ⃗ = 𝑎 = (
2
0
) 

𝑂𝐵⃗⃗ ⃗⃗  ⃗ = �⃗� = (
8
0
) 

𝑂𝐶⃗⃗⃗⃗  ⃗ = 𝑐 = (
4
1
) 

The center of area 𝐶𝑂𝐺 of a triangle results from the intersection of the side bisectors (see figure 

31) 

 

Figure 31: Graphical representation of the bisectors of the sides of a triangle 
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For 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵, 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐶 and 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐵𝐶 as vectors of the center coordinates of the side bisectors holds: 

𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵 =
1

2
(𝑎 + �⃗� ) =

1

2
⋅ [(

2
0
) + (

8
0
)] = (

5
0
) 

  𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐶 =
1

2
(𝑎 + 𝑐 ) =

1

2
⋅ [(

2
0
) + (

4
1
)] = (

3
0.5

) 

  𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐵𝐶 =
1

2
(�⃗� + 𝑐 ) =

1

2
⋅ [(

8
0
) + (

4
1
)] = (

6
0.5

) 

For subsequent determination equations we only use 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵. An analogous procedure can also 

be carried out with the vectors 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐶 as well as 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐵𝐶. Of interest now is the determination of 

the vector from 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵 to the point 𝐶: 

𝑚𝑝𝐴𝐵𝐶⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑐 − 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵 = (
4
1
) − (

5
0
) = (

−1
1

) 

The center of gravity 𝐶𝑂𝐺 is always closer to the respective reference edge of the side bisector 

than to the corresponding corner point. The length of the leg that runs to the reference edge is 

1

3
 and that to the corner point is 

2

3
 of the total length of the bisector. 

Based on this, the vector of the center of gravity 𝑠𝑝⃗⃗⃗⃗  can be determined as follows: 

𝑠𝑝⃗⃗⃗⃗ = 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵 +
1

3
⋅ 𝑚𝑝𝐴𝐵𝐶⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (

5
0
) +

1

3
⋅ (

−1
1

) = (4. 66

0. 33
) 

Since 𝑠𝑝⃗⃗⃗⃗ = 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵 +
1

3
⋅ 𝑚𝑝𝐴𝐵𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   holds, we can also do a slight transformation: 

𝑠𝑝⃗⃗⃗⃗ = 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵 +
1

3
⋅ 𝑚𝑝𝐴𝐵𝐶⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

1

2
⋅ (𝑎 + �⃗� ) +

1

3
⋅ (𝑐 − 𝑚𝑝⃗⃗⃗⃗⃗⃗ 𝐴𝐵) 

Resulting from this 

𝑠𝑝⃗⃗⃗⃗ =
1

2
⋅ (𝑎 + �⃗� ) +

1

3
(𝑐 − (

1

2
(𝑎 + �⃗� )) ) 

und thus: 

𝑠𝑝⃗⃗⃗⃗ =
1

2
𝑎 +

1

2
�⃗� +

1

3
𝑐 −

1

6
𝑎 −

1

6
�⃗�  

und with this: 

𝑠𝑝⃗⃗⃗⃗ =
1

3
⋅ (𝑎 + �⃗� + 𝑐 ) 

This corresponds to the separate addition of the abscissa and ordinate coordinates of a triangle 

and the subsequent multiplication by 
1

3
. 
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Section 𝒊 = 𝟐 

Determination of the area of the rectangular area 𝐴𝑖=2 

𝐴𝑖=2 = (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) = (6.6 − 3.8) ⋅ (0.6 − 0) = 1.68 

Determination of the centroid coordinates of the area 𝐴𝑖=2 

𝑥𝑐𝑜𝑔
𝑖=2 =

1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) + 𝑤𝑙𝑏 =

1

2
⋅ (6.6 − 3.8) + 3.8 = 5.2 

𝜇(𝑥)𝑐𝑜𝑔
𝑖=2 =

1

2
⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
⋅ (0.6 − 0) = 0.3 

Thus, for the coordinates of the centroid of the subarea 𝑖 = 2, it applies: 

𝑥𝑐𝑜𝑔
𝑖=2 = 5.2 and 𝜇(𝑥)𝑐𝑜𝑔

𝑖=2 = 0.3 

 

Section 𝒊 = 𝟑 

In section 𝑖 = 3, there is the further specificity that this section must be divided into two sub-

sections. Accordingly, both a triangle (𝐴𝑖=3|1; vertically hatched area in figure 25) and a rec-

tangle (𝐴𝑖=3|2; tiled area in figure 25) result as partial areas of the section. 

Determination of the area of the triangular area 𝐴𝑖=3|1 

𝐴𝑖=3|1 =
1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
(8.43 − 6.6) ⋅ (0.6 −

1

7
) =

366

875
= 0.418 

Determination of the area of the rectangular area 𝐴𝑖=3|2 

𝐴𝑖=3|2 = (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) = (8.43 − 6.6) ⋅ (
1

7
− 0) = 0.261 

Determination of the centroid coordinates of the area 𝐴𝑖=3|1 

(𝑥𝑐𝑜𝑔
𝑖=3|1

|𝜇(𝑥)𝑐𝑜𝑔
𝑖=3|1

) =
1

3
⋅ (

𝑥𝐴
𝑖=3|1

+ 𝑥𝐵
𝑖=3|1

+ 𝑥𝐶
𝑖=3|1

𝜇(𝑥𝐴
𝑖=3|1

) + 𝜇(𝑥𝐵
𝑖=3|1

) + 𝜇(𝑥𝐶
𝑖=3|1

)
) =

1

3
⋅ (

8.43 + 6.6 + 6.6
1

7
+

1

7
+ 0.6

)

= (
7.21
31

105

) = (
7.21
0.295

) 

Thus, for the coordinates of the centroid of the subarea 𝑖 = 3|1, it applies: 

𝑥𝑐𝑜𝑔
𝑖=3|1

= 7.21 and 𝜇(𝑥)𝑐𝑜𝑔
𝑖=3|1

=
31

105
= 0.295 

Determination of the centroid coordinates of the area 𝐴𝑖=3|2 

𝑥𝑐𝑜𝑔
𝑖=3|2

=
1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) + 𝑤𝑙𝑏 =

1

2
⋅ (8.43 − 6.6) + 6.6 = 7.515 

𝜇(𝑥)𝑐𝑜𝑔
𝑖=3|2

=
1

2
⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
⋅ (

1

7
− 0) =

1

14
= 0.071 
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Section 𝒊 = 𝟒 

For the determination of the centroid of area of section 𝑖 = 4, an analogous procedure to section 

𝑖 = 3 is to be adopted. 

Accordingly, both a triangle (𝐴𝑖=4|1) and a rectangle (𝐴𝑖=4|2) result as partial areas of the sec-

tion. 

Determination of the area of the triangular area 𝐴𝑖=4|1 

𝐴𝑖=4|1 =
1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
(8.75 − 8.43) ⋅ (0.25 −

1

7
) =

3

175
= 0.017 

 

Determination of the area of the rectangular area 𝐴𝑖=4|2 

𝐴𝑖=4|2 = (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) = (8.75 − 8.43) ⋅ (
1

7
− 0) =

8

175
= 0.046 

 

Determination of the centroid coordinates of the area 𝐴𝑖=4|1 

(𝑥𝑐𝑜𝑔
𝑖=4|1

|𝜇(𝑥)𝑐𝑜𝑔
𝑖=4|1

) =
1

3
⋅ (

𝑥𝐴
𝑖=4|1

+ 𝑥𝐵
𝑖=4|1

+ 𝑥𝐶
𝑖=4|1

𝜇(𝑥𝐴
𝑖=4|1

) + 𝜇(𝑥𝐵
𝑖=4|1

) + 𝜇(𝑥𝐶
𝑖=4|1

)
) =

1

3
⋅ (

8.43 + 8.75 + 8.75
1

7
+ 0.25 +

1

7

)

= (
8.643

5

28

) = (
8.643
0.179

) 

Thus, for the coordinates of the centroid of the subarea 𝑖 = 4|1 holds: 

𝑥𝑐𝑜𝑔
𝑖=4|1

= 8.643 and 𝜇(𝑥)𝑐𝑜𝑔
𝑖=4|1

=
5

28
= 0.179 

 

Determination of the centroid coordinates of the area 𝐴𝑖=4|2 

𝑥𝑐𝑜𝑔
𝑖=4|2

=
1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) + 𝑤𝑙𝑏 =

1

2
⋅ (8.75 − 8.43) + 8.43 = 8.59 

𝜇(𝑥)𝑐𝑜𝑔
𝑖=4|2

=
1

2
⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
⋅ (

1

7
− 0) =

1

14
= 0.071 

 

Section 𝒊 = 𝟓 

Determination of the area of the rectangular area 𝐴𝑖=5 

𝐴𝑖=5 = (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) = (12.5 − 8.75) ⋅ (0.25 − 0) = 0.938 

Determination of the centroid coordinates of the area 𝐴𝑖=5 

𝑥𝑐𝑜𝑔
𝑖=5 =

1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) + 𝑤𝑙𝑏 =

1

2
⋅ (12.5 − 8.75) + 8.75 = 10.625 

𝜇(𝑥)𝑐𝑜𝑔
𝑖=5 =

1

2
⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
⋅ (0.25 − 0) = 0.125 
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Thus, for the coordinates of the centroid of the subarea 𝑖 = 5 holds: 

𝑥𝑐𝑜𝑔
𝑖=5 = 10.625 and 𝜇(𝑥)𝑐𝑜𝑔

𝑖=5 = 0.125 

 

Section 𝒊 = 𝟔 

Determination of the area of the triangular area 𝐴𝑖=6 

𝐴𝑖=6 =
1

2
⋅ (𝑤𝑢𝑏 − 𝑤𝑙𝑏) ⋅ (ℎ𝑢𝑏 − ℎ𝑙𝑏) =

1

2
⋅ (13 − 12.5) ⋅ (0.25 − 0) = 0.063 

Determination of the centroid coordinates of the area 𝐴𝑖=6 

To determine the centroid of the area of a right triangle and the coordinates of three vertices 

𝐴, 𝐵, and 𝐶 [(𝑥𝐴|𝑦𝐴), (𝑥𝐵|𝑦𝐵), (𝑥𝐶|𝑦𝐶)], we can refer to the following determination rule in our 

notation: 

(𝑥𝑐𝑜𝑔
𝑖=6|𝜇(𝑥)𝑐𝑜𝑔

𝑖=6) =
1

3
⋅ (

𝑥𝐴
𝑖=6 + 𝑥𝐵

𝑖=6 + 𝑥𝐶
𝑖=6

𝜇(𝑥𝐴
𝑖=6) + 𝜇(𝑥𝐵

𝑖=6) + 𝜇(𝑥𝐶
𝑖=6)

) =
1

3
⋅ (

12.5 + 13 + 12.5
0 + 0 + 0.25

)

= (
12.667
0.083

) 

Thus, for the coordinates of the centroid of the subarea 𝑖 = 6 holds: 

𝑥𝑐𝑜𝑔
𝑖=6 = 12.667 and 𝜇(𝑥)𝑐𝑜𝑔

𝑖=6 = 0.083 

With the above determinations of the area contents and the respective area centroids, one can 

now determine the area centroid of the total area of the resulting fuzzy output set. Thus, for the 

abscissa coordinate of the centroid of the area 𝑥𝑐𝑜𝑔 holds: 

𝑥𝑐𝑜𝑔 =
∑ 𝑥𝑐𝑜𝑔

𝑖 ⋅ 𝐴𝑖
6
𝑖=1

∑ 𝐴𝑖
6
𝑖=1

=

=

𝑥𝑐𝑜𝑔
𝑖=1 ⋅ 𝐴𝑖=1 + 𝑥𝑐𝑜𝑔

𝑖=2 ⋅ 𝐴𝑖=2 + 𝑥𝑐𝑜𝑔
𝑖=3|1

⋅ 𝐴𝑖=3|1 + 𝑥𝑐𝑜𝑔
𝑖=3|2

⋅ 𝐴𝑖=3|2 + 𝑥𝑐𝑜𝑔
𝑖=4|1

⋅ 𝐴𝑖=4|1 +

𝑥𝑐𝑜𝑔
𝑖=4|2

⋅ 𝐴𝑖=4|2 + 𝑥𝑐𝑜𝑔
𝑖=5 ⋅ 𝐴𝑖=5 + 𝑥𝑐𝑜𝑔

𝑖=6 ⋅ 𝐴𝑖=6

𝐴𝑖=1 + 𝐴𝑖=2 + 𝐴𝑖=3|1 + 𝐴𝑖=3|2 + 𝐴𝑖=4|1 + 𝐴𝑖=4|2 + 𝐴𝑖=5 + 𝐴𝑖=6
 

 

𝑥𝑐𝑜𝑔 =

=

3.2 ⋅ 0.54 + 5.2 ⋅ 1.68 + 7.21 ⋅ 0.418 + 7.515 ⋅ 0.261 + 8.643 ⋅ 0.017 + 8.59 ⋅ 0.046 +
10.625 ⋅ 0.938 + 12.667 ⋅ 0.063

0.54 + 1.68 + 0.418 + 0.261 + 0.017 + 0.046 + 0.938 + 0.063
 

 

𝑥𝑐𝑜𝑔 =
26.746

3.963
= 6.749 

 

In an analogous procedure, the following results for the ordinate coordinate 𝜇(𝑥𝑐𝑜𝑔) apply: 
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𝜇(𝑥𝑐𝑜𝑔) =

0.2 ⋅ 0.54 + 0.3 ⋅ 1.68 + 0.295 ⋅ 0.418 + 0.071 ⋅ 0.261 + 0.179 ⋅ 0.017 +
0.071 ⋅ 0.045 + 0.125 ⋅ 0.938 + 0.083 ⋅ 0.063

0.54 + 1.68 + 0.418 + 0.261 + 0.017 + 0.046 + 0.938 + 0.063
 

 

𝜇(𝑥𝑐𝑜𝑔) =
0.883

3.963
= 0.2234 

Thus, to determine the values of 𝑥𝑐𝑜𝑔 and 𝜇(𝑥𝑐𝑜𝑔), we can omit complex integrals for purely 

triangular membership functions. 

4 Summary 

Besides the presentation of selected tools of scenario management (influence, consistency, 

cross-impact analysis), the subject of this paper is the presentation of various defuzzification 

methods in this field. We focus on the so-called maximum and center of gravity methods. The 

latter, which we also explain by way of example, is given a relatively large amount of space. It 

is shown that the determination of the center of area is very simple for triangular and trapezoidal 

membership functions of the fuzzy output. For curvilinear membership functions, on the other 

hand, one has to rely on the integral calculus. Moreover, we formulate an exemplary fuzzy rule 

system in the field of cross-impact analysis. 

 

                                                 

 

4 The deviations between the determined ordinate coordinate and abscissa coordinate when using the simplified 

method and the determined ordinate coordinate and abscissa coordinate when using the integral calculation result 

from rounding differences. 
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