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Abstract:  

In this paper, we investigate how technology has contributed to experimental economics in the 
past and illustrate how experimental economics can contribute to technological progress in the 
future. We argue that with machine learning (ML) a new technology is at hand, where for the 
first time experimental economics can contribute to enabling substantial improvement of tech-
nology. At the same time, ML opens up new questions for experimental research because it can 
generate observations that were previously impossible. To demonstrate this, we focus on algo-
rithms trained to detect lies. Such algorithms are of high relevance for research in economics 
as they deal with the ability to retrieve otherwise private information. We deduce that most of 
the commonly applied data sets for the training of lie detection algorithms could be improved 
by applying the toolbox of experimental economics. To illustrate this, we replicate the “lies in 
disguise-experiment” (Fischbacher & Föllmi-Heusi, 2013) with a modification regarding mon-
itoring. The modified setup guarantees a certain level of privacy from the experimenter yet 
allows to record the subjects as they lie to the camera. Our results indicate the same lying be-
havior as in the original experiment despite monitoring. Yet, our experiment allows for an in-
dividual-level analysis and provides a video data set that can be used for lie detection algo-
rithms. 
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1. Introduction 

In a lot of experimental disciplines, scientific knowledge and technological progress are in a 

reciprocal exchange relationship that leads to a significant acceleration of both knowledge ac-

quisition and technology development. Findings from basic research lead to the development 

of new, improved technology, which in turn can be used as an instrument for basic research. 

This reciprocal acceleration process is well-studied, especially in the natural sciences (Brooks, 

1994; Hansson, 2015). In experimental economics research, the use of technology also plays an 

important role. Starting from calculators to computer tomographs, techniques of different com-

plexity are used in experiments and increase the quality of economic experiments. However, 

the relationship between experiments and technology has so far been a kind of one-way street, 

because technical innovations are completely exogenous. Experimental economics has made 

no contribution of its own to the development of better technology. The reciprocal acceleration 

that we can observe in the natural sciences is therefore not taking place.  

The central thesis of this paper is that with machine learning (ML) a new technology is at hand, 

where for the first time experimental economics can contribute to enabling substantial improve-

ment of technology. At the same time, ML opens up new questions for experimental research 

because it can generate observations that were previously impossible (Camerer, 2019). Thus, 

for the first time, there could be fruitful interaction between technology and experimental re-

search in economics.  

Despite the high relevance of ML for experimental research, we do not observe that it is used 

in experiments to any significant extent. To understand why this is the case, we first need to 

clarify which conditions technologies have to fulfill to be applied and to gain acceptance in 

experimental research in economics. We will argue that a necessary condition is that a Pareto 

improvement is achieved by the use of the technology with respect to three quality characteris-

tics of experimental research (internal and external validity, reproducibility). A sufficient con-

dition for the use of a technology is that it is also available at a low cost, whereby the necessary 

learning effort for mastering the technology must also be included in the costs.  

Based on this finding, we argue that the current quality of ML is not high enough to achieve the 

necessary Pareto improvement. We locate one cause of the insufficient quality in the fact that 

the datasets needed to train the ML algorithms are not of the necessary quality. At this point, a 

door opens for experimental economics, allowing it, in turn, to contribute to the advancement 

of technology. Experimental methodology is extremely well suited for generating data under 

controlled conditions. It can therefore not only be used to evaluate algorithm based systems 
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(Gardner et al., 1993; Gupta et al., 2018) but to generate exactly the data that is best suited to 

train ML algorithms (Marsden & Pingry, 2018). In this way, the experimental method can be 

used to optimize the algorithms, which cannot be achieved on the basis of the data sets available 

so far.  

In this paper, we will first consider what conditions a technology must meet in order to be used 

in experimental research (Section 2). Then, we will use a concrete example (detecting lies using 

AI) to demonstrate that the availability of datasets for training ML algorithms is indeed the 

limiting factor for using ML in experimental research (Section 3). We will use the same exam-

ple to demonstrate how an experiment can be used to generate optimal training datasets, and 

we will show that doing so can already generate interesting results for experimental research 

(Section 4). 

2. When do technologies succeed?  

The first economic experiments were conducted using pen and paper or even blackboard and 

chalk. This has changed because gradually more and more technological tools came into use. 

In the beginning, it was simple computer networks, later mobile devices, smartphones, and the 

Internet came along. On the other hand, some technological innovations have not managed to 

get beyond a niche existence. FMRI and eye tracking, for example, have not been able to es-

tablish themselves to this day. Why is that? What determines whether a new technology be-

comes an integral part of the experimental method or not? This question is important because 

only if it can be answered, it will be possible to assess whether and under what conditions 

techniques that make use of machine learning can become established in the laboratory.  

To answer the question raised above, it is useful to briefly recall the purpose of economic ex-

periments. The major goal of conducting economic experiments is to study human behavior in 

a controlled environment. Experimental economics focuses on people’s decisions on the use of 

scarce resources and aims to establish causal links. The central factor is the proximity of eco-

nomic experiments to formal models. Given that models rely on several strict assumptions, it is 

essential to ensure these assumptions are met when the theory is tested. This is why controlling 

the experimental environment is of major importance. This contrasts with classical empirical 

studies which do not rely on experimental control but on sophisticated statistics and economet-

rics to identify existing relationships.  

This description of the tasks of experimental research suggests that the following three criteria 

should be used to assess the quality of experimental research: Internal validity, external validity, 
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and reproducibility (Weimann & Brosig-Koch, 2019). The internal validity of an experiment 

ensures that experiments investigate exactly what they are supposed to investigate. For exam-

ple, if an economic model is tested, it must be ensured that the experimental design reflects all 

incentives and restrictions that are assumed to be effective in the model. It is one of the out-

standing strengths of economic experiments that they can ensure high internal validity due to 

the good controllability of many influencing factors in the laboratory. The external validity of 

experiments is a quality criterion because experimental research ultimately also serves to un-

cover causal relationships in reality (IJzerman et al., 2020). The reproducibility of an experi-

ment is a criterion for its quality because reproducing experiments is an elementary and indis-

pensable component of successful experimental research (Camerer et al., 2016). A single ex-

periment allows one to make statements about the behavior of a certain group of people, at a 

certain place, at a certain time under certain boundary conditions. A generally valid causal con-

nection cannot be asserted by a single experiment. Only the multiple repetitions of the experi-

ment with other persons, at other places, at other times, and under other boundary conditions 

can provide evidence for the existence of a generally valid causal relationship. Therefore, the 

reproducibility of an experiment is a quality criterion. If a new technology can improve one of 

the three quality criteria without worsening another (i.e., achieving a Pareto improvement), then 

it fulfills the necessary condition for gaining acceptance in experimental research. What does 

this mean exactly?  

The internal validity of an experiment depends very much on how accurately the variables of a 

model under test can be measured. Compared to an experiment conducted with pencil and pa-

per, experiments conducted with a computer network are more accurate, faster, and less prone 

to error, even without specialized software. Thus, the computer improves the internal validity 

of an experiment. However, better internal validity can also be achieved by allowing technology 

to collect data that could not be observed without it. fMRI is a good example of this. Undoubt-

edly, this technology increases the internal validity of an experiment because it (e.g. by observ-

ing the BOLD response) allows inferences to be made about brain activity that would not be 

observable without fMRI. Internal validity of an experiment, however, involves not only accu-

rate observation of the dependent variable but also control of other variables that may affect the 

subject's behavior. Computers and specialized software that was developed purposefully for 

experimental economics help here as well.  A standardized experimental environment that can 

be achieved using computers and specialized software (e.g. z-Tree (Fischbacher, 2007), oTree 

(Chen et al., 2016)) implies a high level of control over what subjects can see and do in the 

experiment. Summing up, technology can contribute to establishing internal validity in terms 
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of either allowing the measurement of the relevant variables or fostering control over other 

variables. 

The external validity of experiments can also be increased by the use of certain technologies. 

This is especially true when it comes to technologies that also play an increasing role in the real 

world. Consider the case of communication.  In reality, communication plays a central role in 

human decision-making and should be analyzed in laboratory experiments (Brandts et al., 

2019). On the one hand, technology enables experimenters to implement communication in a 

controlled manner (thus contributing to internal validity). On the other hand, video-conference 

tools became an integral part of our society. Using similar or identical communication tools in 

laboratory experiments as in the real world increases parallelism (Brosig et al., 2003). Summing 

up, technology can contribute to increasing external validity. 

Finally, let us consider the third quality criterion “replicability”. Standardized experimental en-

vironments, e.g. z-Tree and oTree enable researchers to copy the experiment. This facilitates 

replications and increases their quality. Data repositories allow access to experimental data. 

None of it would be possible without technology (i.e. computers and networks). Self-evidently, 

there are non-technological factors that foster replicability (research culture – scientific appre-

ciation of replications or publication criteria). We do not negate those, but simply stress the 

necessity of technology to improve replicability in experimental economics.  

So far, we have only talked about the necessary conditions for the success of a new technology. 

What is missing is a consideration of the costs associated with the use of technology. For this, 

a preliminary consideration is necessary. We have argued above that the necessary condition 

for the success of a technology is that a Pareto improvement is achieved with respect to the 

quality criteria. Thus, it is clear that the use of fMRI, for example, does not fulfill this condition, 

because fMRI strengthens internal validity, but this is done at the expense of external validity 

and reproducibility. Thus, it is clear that fMRI will not gain widespread acceptance. However, 

one can also add the deterioration of external validity and reproducibility to the (opportunity) 

costs of the technology. In this case, its use makes sense at least in cases where the total cost is 

still smaller than the benefit of better internal validity. Concerning fMRI, this is only in rela-

tively rare cases, because not only the opportunity costs are significant, but also the monetary 

costs and the learning effort for experimenters are immensely high.  

In summary, the conditions for a technology to be successful can be described as follows. If the 

use of a new technology allows a Pareto improvement in the quality criteria and the monetary 

and learning costs are low, the sufficient conditions for the widespread use of the technology 



6 
 

are met. If there is a tradeoff between the quality criteria, the use of the technology is per se 

associated with high opportunity costs, which reduce the chances of success. If this is com-

pounded by high monetary and/or learning costs, this reduces the prospects of success even 

further. 

 

3. Machine learning, lie detection, and the data set problem 

3.1. A short introduction to machine learning 

Machine learning (ML) is a core scientific field of artificial intelligence (AI) that provides ma-

chines with the ability to learn without being explicitly programmed (Samuel, 1959). Before 

ML, AI methods were only strict about solving low-level tasks in business and enterprise set-

tings like automation or rule-based classification. Traditional rule-based methods generate pre-

defined outputs based on particular rules programmed by humans. In contrast, ML models sim-

ulate human intelligence by learning the rules from the training data to solve complex problems, 

as shown in Fig. 1.2 

 

Fig. 1 A machine learning pipeline 

The core concept in ML algorithms is the process of training. The data used for this purpose 

can be either labeled or unlabeled training. Labeled data comes with corresponding ground 

                                                 
2 ML is considered one of the most interesting research topics and applies to different scientific areas, including 
bioinformatics (Kong et al., 2007; Mackowiak et al., 2015), medicine (Asadi et al., 2014; Kang et al., 2015; Zhang 
et al., 2017), meteorology (Aybar-Ruiz et al., 2016; Cramer et al., 2017; Rhee & Im, 2017), economics (Barboza 
et al., 2017; Bohanec et al., 2017; Zhao et al., 2017), robotics (Fiedler et al., 2021; Gastaldo et al., 2015; Strazdas 
et al., 2022), and food security (Fragni et al., 2018; Maione & Barbosa, 2019). 
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truths assigning each sample to a certain class or denoting specific information therein. In con-

trast, unlabeled data comes without any ground truths. Based on the type of data and the way 

of training, ML distinguishes between supervised and unsupervised learning (Mohammed et 

al., 2016).  

Supervised learning is considered the most fundamental type of ML, which uses labeled data 

to obtain an optimal model with a good performance by training ML algorithms. The ML model 

tries to find the relationship between input data and ground truths during training to emulate 

this into a mapping function. Its performance is afterward evaluated on other labeled data, re-

ferred to as the test set. Supervised learning is performed when specific goals are identified to 

be addressed using a certain set of inputs, thus it represents a task-driven approach (Sarker et 

al., 2020). The main drawback of this approach is that labeled data is challenging to obtain. 

Unsupervised learning has the advantage of working with unlabeled data to obtain the underly-

ing hidden structure, hence it is a data-driven approach (Han et al., 2012). The advantage is that 

the training data does not need to be to be extensively prepared by humans. Unsupervised learn-

ing models are considered computationally intensive, as they need extensive unlabeled data to 

output intended results. Their main drawback is that they can provide highly inaccurate results 

that need to be validated by humans. 

For applications that aim to generate outputs for new data solely supervised training approaches 

can be considered since unsupervised training is only able to determine internal structures and 

dependencies of an already existing dataset. Due to these constraints concerning possible fields 

of application, supervised training methods are much more dominant in ML, leading as a con-

sequence to the necessity for annotating the data. During this annotation process, one or more 

labels are assigned to each image or video sequence varying in type and quantity depending on 

the desired task. Thereby, these labels set the learning goal of the model and represent the op-

timal outputs. To accomplish this labeling, one relies on human annotators and experts in the 

respective field to ensure a high level of data quality. 

3.2. Lie detection with machine learning 

As mentioned earlier, in the following we will use lie detection as an example of an application 

of ML that can potentially generate an advance in experimental economics research while being 

improved by experimentally generated datasets. In principle, ML can detect lies if a lie is ex-

pressed in a certain way in the facial expressions of the person who says it. The decisive factor 

here is that the human face has a great many micro-expressions that cannot normally be con-

sciously controlled. The technology would fail if each person's facial expressions moved in an 
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individual way during a lie. However, if certain expressions were typical of a lie, then these 

could be detected with a well-trained ML algorithm.  

Using a successful lie detection algorithm would mean using a new technology in an economic 

experiment. But would that represent an advance in experimental research in the sense of the 

considerations of the second paragraph? To answer this question, we need to apply the criteria 

mentioned in section two. 

Internal validity 

Similar to studies using fMRI technology, ML allows the observation of variables that cannot 

be observed without this technique. The human eye is unable to detect and correctly interpret 

micro expressions. Numerous experimental studies on lie detection have shown that humans 

are very poor at detecting lies (Ockenfels & Selten, 2000). ML can lead to significantly higher 

probabilities with which lies can be unmasked. This has two important implications. On the one 

hand, it makes it easier to experimentally reproduce models that assume a certain probability 

of detection. For example, consider the communication model of Kartik (2009) or models that 

depict corrupt behavior that is detected with a certain probability (Allingham & Sandmo, 1972). 

On the other hand, ML enables exploratory experiments that investigate how the existence of a 

technology that can detect lies affects behavior, for example, in negotiations. Will negotiators 

resort to this technology? How does the ability to detect lies with higher probability change the 

outcome of negotiations? In summary, it is clear that internal validity increases by a ML tech-

nology for lie detection and that the research horizon is significantly expanded with it. 

External validity 

Concerning external validity, the central question is whether such tools will be applied in the 

real world. Although forecasts are speculative by nature, there are a few indications that if such 

technology becomes accessible, it will be applied, as there is already some demand for it in the 

real world (Sánchez-Monedero & Dencik, 2020). Assuming, the technology will prevail, the 

application of such a tool in a laboratory experiment increases the external validity. 

Replicability 

Provided that the algorithm for lie detection is available as open source, it should be clear that 

the reproducibility of an experiment is given in the same way as it is the case for the replication 

of standard statistical procedures. Thus, it is clear that ML fulfills the necessary conditions for 
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technical success concerning lie detection because it represents a Pareto improvement concern-

ing the quality criteria considered so far. Finally, it remains to be clarified what costs are asso-

ciated with the use of this technology.  

Costs 

Concerning acquisition costs of physical devices, the costs are comparatively low as normal 

HD Web-Cams suffice. Thus, the costs are similar to those for a webcam. Concerning other 

costs, the ultimate goal of developing such tools in science is to make them publicly available 

as open source. Yet, by definition, the existence of well-functioning open-source alternatives 

makes the financial costs for researchers very low. The learning costs are hardly known a priori 

but the application of the open-source tool is unlikely to be more complicated than currently 

applied code for statistical analysis in Python, R, or Stata. If commercial software provides an 

even more intuitive user interface, this will make the application even easier. 

The monetary costs and the learning costs are thus so low that they certainly do not stand in the 

way of widespread use of the new technology. However, one could argue that the use of ML 

leads to opportunity costs because it is accompanied by a higher control effort and a corre-

spondingly pronounced monitoring of the subjects' behavior. Behavior is monitored much more 

intensively than in laboratory experiments without the use of ML which potentially changes the 

behavior, e.g. effort or lying behavior (Boly, 2010; Jansen et al., 2018; Kajackaite & Gneezy, 

2017). However, at least in the case of lie detection, this corresponds to reality when such tech-

nology is used. The awareness of being observed more closely than otherwise is exactly what 

is needed in terms of higher external validity. In this respect, there are no additional opportunity 

costs at this point.  

Summing up, the application of ML on videos in experimental economics potentially combines 

some of the benefits of fMRI research (i.e., detecting variables that otherwise remain hidden to 

humans) with the low costs of common hardware and open-source software. As we discussed, 

the costs of this technology are moderate. Based on our prior discussion this means, if the qual-

ity of the algorithms is high enough, they are very likely to be applied in experimental econom-

ics. This leads to the essential question: how good are these algorithms?  

3.3. The data set problem 

ML has evolved significantly in recent years and in particular, deep learning with its deep neural net-

works (DNN) has emerged as the fastest-growing field in ML (Cao et al., 2018). ML models make deci-

sions based on data fed into them during the training process. From this data, they identify patterns 

and derive features to perform the subsequent classification. The deeper a network architecture is, 
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the more data is needed for training to adjust the weights according to the given task. The severe 

drawback of DNNs is that most of them are black boxes (Buhrmester et al., 2021). Thus, it is neither 

transparent for users how and why a decision was made nor for developers what exactly the network 

has learned. Therefore, the quality of the training data plays a key role, as it is responsible for the later 

behavior of the system. 

In the following, we discuss what is important for high-quality data using the case of video-data-driven 

lie detection. First, we will discuss the data quality parameters of (i) knowing the ground truth and (ii) 

establishing endogenous lying. Then, we address parameters of (iii) reproducibility of datasets, (iv) 

deception of subjects, and (v) technological conditions.  

First, if it is the central goal to train an algorithm to detect lies, then it is of paramount importance to 

obtain a data set that contains lies and truths as well as provides the ability for the researchers to 

distinguish between them with certainty. In the context of this paper we refer to this as knowing the 

ground truth. Therefore, when generating data for lie detection algorithms, it is important to obtain 

full control of the data generation process. This can be done through laboratory experiments. Such 

high level of control facilitates a key process for ML: annotations. As supervised learning is the domi-

nant methodology in ML, raw data is of little utility without annotations (Garrow et al., 2021). Providing 

such annotations is a labor-intensive and error-prone task and usually relies on human annotators 

(Paullada et al., 2021). Their task is either the entirely manual creation of ground truths or the verifi-

cation and refinement of annotations in a semi-automatic manner (Spasic & Nenadic, 2020). Yet, gath-

ering data in a laboratory experiments leads to either fully automatic annotations or annotations that 

are very easy to conduct by humans. Therefore, this reduces labor-intensity and error-proneness of 

the data generation process.  

Second, to establish high external validity of the data set, subjects should lie based on their own deci-

sions in contrast to simply being asked to lie by the experimenter. This resembles much closer the real 

world. Therefore, a good data set on lying, should be based on an experiment, where subjects decide 

on their own whether to lie or not. To make this possible, it is crucial to establish the right financial 

incentives in the experiment. These incentives should resemble the real-world conflict between lying 

and telling the truth with respective consequences. This can be done by inducing value in the decisions 

(Smith, 1976, 1982) which is done through financial incentives. Such a carefully controlled laboratory 

experiment would provide top quality data as argued by Marsden and Pingry (2018). 

Further, providing financial incentives contributes to the third quality parameter: reproducibility. A 

good economic experiment has financial incentives that dominate other subjective values. This and 

the careful documentation of the entire experimental design enable researchers to conduct identical 
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experiments in different laboratories (Weimann & Brosig-Koch, 2019). This increases the validity of the 

data and enables other researchers to expand existing data bases from prior experiments with new 

data. 

The fourth parameter is the no deception rule that is applied in experimental economics. This rule 

ensures that subjects trust the experimenter. The importance of the rules is highlighted when consid-

ering the opposite. If subjects do not trust the instructions because they are sometimes lied to, their 

behavior depends on their belief whether the instructions are true. This reduces experimental control 

and therefore, the quality of the data (Weimann & Brosig-Koch, 2019). 

Finally, when it comes to data quality, it is important to control the technological environment of the 

experiment. For visual data, in particular, there is a multitude of possible environmental interferences 

such as varying illumination and others (Bae et al., 2015; Chi & Caldas, 2011; Zhu et al., 2016). In addi-

tion, camera characteristics can affect the quality (Golparvar-Fard et al., 2009; Hui et al., 2015). Fur-

thermore, when storing large amount of data, the type of compression and possible accompanying 

losses should be taken under advisement (Guo et al., 2021; Israel et al., 2020). All these aspects are 

fundamental to the development of sophisticated algorithms capable of dealing with uncontrolled op-

erations (Xu et al., 2021). 

After establishing the quality parameters for high-quality data for lie-detection software, we briefly 

analyze data sets in current use. We identified six major data sets that are used for training lie-detec-

tion algorithms. Yet, none of these fulfills all the quality parameters we discussed (see Table 1). In some 

experiments, not even the experimenters know the truth. In others, the subjects are not incentivized 

to lie but are simply told to do so without any control mechanisms. Further, several experiments em-

ploy different types of deception. Thus, while it is possible to train algorithms on these data sets, these 

algorithms are likely to suffer from the same methodological flaws, inherent to the data generation 

process. Here, we argue, experimental economics can help. Due to the long history of providing con-

trolled, standardized, well documented, and incentivized experiments in laboratories with good no-

deception reputation, this methodology can contribute to providing automatically (or easily) anno-

tated data sets for training algorithms. In the following chapter, we provide an example how a well-

studied economic experiment on lying can be used to generate such a video data set. 
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Table 1. Summary of currently used data sets on lie detection 

Paper True 

state 

objec-

tively 

known3 

Incentiviza-

tion4 

Is incentivi-

zation re-

lated to the 

content of 

the lie 

Avoiding 

subject 

deception 

DDPM No Yes  No Yes 

Box of Lies Yes No No Yes 

Real-life trial data No Yes Yes No sub-

jects 

MU3D No No No Yes 

Bag-of-lies Yes No No Yes 

Silesian Yes No No No 

 

4. The Experiment 

4.1. Experimental design 

The aim of the experiment was to observe subjects who, of their own free will, either tell the 

truth or lie in order to gain an advantage. In order to know whether a subject is currently lying 

or speaking the truth, it was necessary to know the respective "truth". To achieve this goal, we 

suitably modified the well-known experiment of Fischbacher and Föllmi-Heusi (2013) (FFH). 

Subjects had to roll a die once. The number of points on the dice is documented on a camera 

(Camera 1), which is placed on the left-hand side of their desk. Afterward, they are connected 

to the experimenter via video chat (using Camera 25) and tell her their respective number of 

points. The payoff is based on the number they tell the experimenter into the camera. In line 

with Fischbacher and Föllmi-Heusi (2013), for rolling a number between 1 and 5, the subjects 

receive a payment of 1 to 5€ respectively. If they roll a 6, the payoff is 0€.  

                                                 
3 This refers to some data sets relying on the subjects themselves defining their statements as true or false. Thus, 
the experimenter does not objectively know the truth. 
4 Unless clearly stated, we assume no incentivization took place. The real-life trial data constitutes an exemption 
as people recorded were incentivized through real-life consequences of the judicial system. 
5 To observe the dice, we used a simple Logitech HD Pro Webcam C920 for Camera 1. As Camera 2 which is 
important for the video data set, we used Logitech BRIO 4K UHD. 
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Concerning the technical setup, Camera 2 is placed on a monitor in front of the subject. It is 

used for video chat. Camera 1 is downside-faced placed, mounted at a height of 40cm, and 

focuses on an area of 20cm*30cm where subjects roll a die. Camera 1 is not connected to the 

experimenter, i.e., she does not check the individual dice roll and video chat testimonies of 

experimental subjects. This is important since prior research indicates that the chance of being 

caught reduces lying behavior (Kajackaite & Gneezy, 2017). Therefore, it is crucial that the 

subjects believe this setup. Since Charness et al. (2022) observe that a lot of subjects are not 

aware of the no-deception policy in economic experiments and Frollová et al. (2021) indicate 

the importance of subjects’ perception of information in laboratory experiments with lying, this 

rule is explicitly stated and verified by a certificate of the GfeW ethics commission, which is 

presented to the subjects along with the instructions in the experiment6. To ensure the anonym-

ity of data, the research process is split up among the authors as it is displayed in Figure 2. 

Author 4 conducted the experiment in the laboratory but is not informed about the true dice 

rolls. Author 2 received the videos of the dice and annotated them7. Using a pseudonymized 

identifier, Author 2 merged two sets to analyze individual lying behavior, and sends it to Author 

1. Author 1 does neither have any personal information on the subjects nor their videos. This 

results in a similar situation as in the original paper yet includes lying information on the indi-

vidual level. 

For conducting and recording the videoconferences we used MTV (Bershadskyy et al., 2022).8 

In total, we recruited 148 students. Out of these, 47 students were in the treatment that directly 

replicated FFH (without cameras) and 101 students belonged to our variation of FFH (with 

cameras). The students agreed to be recorded in line with the data regulation of the laboratory. 

The experiments were conducted between June and October 2022. Each experiment lasted at 

most 10 minutes. During the sessions, there was no communication between subjects. Because 

of the Covid-19 pandemic and hygienic regulations, people were told that communication with 

the experimenter during the session takes place via video chat. The experimenter guided the 

subjects to their places. Throughout the whole experiment, we used the same two sound-insu-

lated booths with the same lightning. At their places, the subjects received instructions (see 

                                                 
6 To further ensure that all our subjects believe this, we excluded all subjects who study psychology from our 
sample. The reason is that psychology students conduct a lot of experiments yet experiments in psychology can 
include deception of the subjects followed by a debriefing after the experiment. 
7 Note that it would have been better if Author 2 worked in a different city as there remains a chance of recognizing 
somebody from the video on campus. Yet, Author 2 does not work in the laboratory. Therefore, the probability of 
a random meeting is lower than for experimenters who have a more regular contact to subjects. Our results indicate 
that such a split suffices. 
8 The tool allows not only for the typical recording of videos but enables researchers to distinguish the audio 
channels between different speakers. This generates a richer data sample for the engineers. 
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Appendix A) for the experiment. Subjects were fully informed about the experimental setup, 

there was no deception. 

 

 

Fig. 2 Roles of authors to establish a high level of anonymity for the subjects 

4.2 Experimental Results 

In this section we will present the results from our experiment, starting with the same type of 

analysis that was possible in FFH (2013). After that, we will present additional findings that 

became possible due to our additional observation. 

After cleaning the data, 96 out of 101 observations9 can be evaluated. Looking at the stated dice 

rolls, we observe the same pattern as in the original paper (see Figure 3). 37.5% of subjects 

report having rolled a 5 (payoff maximizing number) and 4.2% report to have rolled a six (pay-

off minimizing number). To provide additional evidence that this effect is not confounded by a 

selected sample as compared to the original research, we further conducted a small replication 

of the original experiment from FFH without monitoring. The results obtained from the control 

group of 47 students are in line with the original findings and support the argument that the 

group lying behavior did not change due to monitoring. The average requested payoffs were 

3.43€ in the control and 3.68€ in the video treatment (MW-Test: p= 0.2224). 

                                                 
9 For some of the videos it is unclear whether there was a technical issue, the subjects removed the box, or the 
subjects simply told a number without having rolled the dice at all. Despite this being a very conservative approach, 
we decided to exclude all of these cases. 
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Fig. 3 Histogram of requested payoffs in video-treatment and control group  

Note: The red line represents the 16.67% benchmark which is the probability of rolling one 

specific number. 

 

Thus, after we indicated that monitoring did not change the results, we focus on the information 

obtained from the process of labeling the data and investigate individual-level lying behavior. 

This allows us to distinguish between payoffs that the subjects requested and those they would 

have deserved due to actual dice rolls. Starting with the information from the labeling, there are 

two interesting observations. First, two subjects did not roll the dice but visibly put them with 

their hand such that it shows the number 5. We consider this to qualify as a lie. These subjects 

were recoded to have deserved a payment of zero euros.10 Second, two subjects rolled more 

than once to obtain a payoff-increasing number. This is also considered a lie since the subjects 

were explicitly told to report the number they rolled with their first roll. In these cases, the 

deserved payment was coded as the payment that would have resulted from the first roll.  

                                                 
10 Please note, that the results do not change if we were to put any other number (e.g., the average payoff of 2.5€ 
or would have excluded these observations). 
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After displaying relevant information from labeling and how it was handled, we turn to statis-

tical analysis. First, we investigate the differences between requested and deserved payoffs. On 

average subjects requested a payoff of 3.68€ while the actual dice would have yielded a payoff 

of 2.56€. The difference is highly significant using Wilcoxon signed-rank test (p<0.0001). Sec-

ond, we focus on the question of how many subjects lied. Given our definitions, 37.50% of all 

subjects lied11. Out of 36 individuals who lied to increase their payoff, 23 individuals lied to 

the fullest extent (stating to have rolled a 5). Four subjects lied to state number 3 and nine 

subjects lied to state number 4. This provides further evidence for partial lying behavior. Fur-

ther, following the analysis strategy from (Lilleholt et al., 2020), we can exclude all those sub-

jects who rolled number 5, since they did not have any incentive to lie. This implies that 43.9% 

of subjects with a financial incentive to lie, reported higher numbers than they rolled. All of this 

information is considered to be unobtainable in the classical setup with anonymity. Still, some 

of these results come with a limitation, which shall be discussed in the next chapter. 

Our experiment led to the generation of a new data set that will be presented in a companion 

paper. We consider this to be the first lie detection video data set that uses incentivized subjects 

without deceiving them and making labeling the data easy. In short, the data set consists of the 

videos that remained after removing questionable video files. It provides an opportunity to as-

sess and improve prior prediction models used for lie detection. It is being used in ongoing 

research with ML algorithms achieving an accuracy of 67% (Dinges et al., 2023).  

5 Conclusion 

The goal of this article is to investigate whether and how experimental economics can benefit 

from and simultaneously contribute to the development of certain machine learning algorithms. 

In so doing, we focus on algorithms designed to detect lies from simple conversational data 

(mostly facial expressions). Lies are an omnipresent element of our daily life, daily work, and 

politics. In bargaining situations, lies can be used to manipulate the other side or to simply keep 

private information private. A tool that can interfere with these goals in real-time can substan-

tially change the nature of bargaining. Given the amount of literature on the topic of bargaining 

and private information, these topics are evidently of high relevance. Thus, research on tech-

nologies that affect these topics should be of high relevance, too.  

                                                 
11 Please note, that one out of the total of 37 lying subjects lied in the other direction. The individual rolled a five 
but stated a four. 



17 
 

Already these technologies exist. Yet, they rely on disputable data sets. Experimental econom-

ics with its rich experimental toolbox can contribute to the development of high-quality data 

sets that are required to develop good lie detecting algorithms. Likewise, given certain quality 

of the algorithms, our methodological discussion clearly shows, that these tools will be applied 

in experimental economics. This result stems from the discussion on the general role of tech-

nology in experimental economics which is divided into four major points: internal validity, 

external validity, replicability, and costs. Our investigation suggests, that given high quality of 

algorithms, this technology will fulfill the necessary and sufficient conditions for application in 

experimental economics. Yet, we conclude, that before experimental economics can use such 

algorithms, it first can support their development.  

We, further, provide a practical example of how this process can work. We apply a classical 

experiment on lying from experimental economics (FFH). We modify the design such that it 

can provide a high-quality video data set on lying. Then, we show, that this modification does 

not affect the experimental results. Instead, it provides a richer statistical analysis on the indi-

vidual level and contributes to future research ideas (e.g., the role of evasive lies). In total, we 

consider the benefits of such experiments to be substantial. It can deal with classical economic 

questions on the role of privacy on lying behavior or partial lying and simultaneously contribute 

to engineering high-quality algorithms by providing the required data sets. Our discussion of 

necessary and sufficient conditions for a technology to be applied in experimental economics 

indicates that such machine learning algorithms will be employed in the future. However, to 

achieve the required quality, there is a need for profound cooperation between experimenters 

and engineers to provide the high-quality data necessary to improve the algorithms. 
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Appendix A  

Translated Instructions: Camera-treatment 

 

Ethical review by the Society for Experimental Economic Research (GfeW) 

The GfeW with identification code (fnax4PA2) certified this experiment. This is a confirmation 

that all the information in the instructions is true. A copy of the audit is enclosed. 

 

Instructions 

For the following experiment, you will receive a payout that depends on the number of points 

you score with a single dice roll.  

To comply with hygiene measures, communication in this experiment will be via the screen. 

You can now take off the mask for this. For communication, please put on the headset in front 

of you. 

Your task is to throw a fair die once into the marked area to your left. The die may only be 

rolled once and must be within the marked area.  

After you have rolled the dice, you can click on the "Next" button and you will be connected to 

the experimenter via video chat. She will ask you what number you rolled. Please answer in a 

complete sentence:  

I rolled the number X. 

Your payoff depends only on the number of dots you speak into the camera. The experimenter 

does not know what number you actually rolled. Even after the experiment, she will not know. 

 

The following table shows you the payout for each number rolled: 

Number of 

eyes on 

dice 

1 2 3 4 5 6 

Payoff 1€ 2€ 3€ 4€ 5€ 0€ 
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Say you rolled a number between 1 and 5, your payout is €1 to €5 accordingly. If you roll a 6, 

your payout is 0€.  

Then, when prompted, you can get up and collect the corresponding money from the experi-

menter and leave the lab. To do this, put the mask back on. 

From now on, please follow the instructions on the screen. 
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Translated Instructions: Control group 

 

For the following experiment you will receive a payoff that depends on the number of points 

you score with a single roll of the dice.  

Your task is to roll a fair die once in the marked area to your left. The die may only be rolled 

once and must be within the marked area. You have 30 seconds to roll the dice. 

Your payoff depends only on the number of points you enter in the input field. The experimenter 

does not know what number you actually rolled. Even after the experiment, she will not know. 

 

The following table shows you the payoff for each number rolled:  

 

Number of 

eyes on 

dice 

1 2 3 4 5 6 

Payoff 1€ 2€ 3€ 4€ 5€ 0€ 

 

Say you rolled a number between 1 and 5, your payoff will be €1 to €5 accordingly. If you roll 

a 6, your payoff is €0.  

After you have rolled the dice, please click on "Next" and enter your rolled number. Once the 

experimenter has called your booth number, please step out of the booth. You can then collect 

your payoff and the experiment is finished after that. 
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